1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/* This file is part of DarkFi (https://dark.fi)
 *
 * Copyright (C) 2020-2024 Dyne.org foundation
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use darkfi_sdk::{
    crypto::{
        schnorr::{SchnorrSecret, Signature},
        MerkleTree, SecretKey,
    },
    pasta::{group::ff::FromUniformBytes, pallas},
    tx::TransactionHash,
};
#[cfg(feature = "async-serial")]
use darkfi_serial::async_trait;

use darkfi_serial::{deserialize, serialize, SerialDecodable, SerialEncodable};
use num_bigint::BigUint;

use crate::{tx::Transaction, util::time::Timestamp, Error, Result};

use super::{parse_record, parse_u32_key_record, Header, HeaderHash, SledDbOverlayPtr};

/// This struct represents a tuple of the form (`header`, `txs`, `signature`).
/// The header and transactions are stored as hashes, serving as pointers to the actual data
/// in the sled database.
/// NOTE: This struct fields are considered final, as it represents a blockchain block.
#[derive(Debug, Clone, SerialEncodable, SerialDecodable)]
pub struct Block {
    /// Block header
    pub header: HeaderHash,
    /// Trasaction hashes
    pub txs: Vec<TransactionHash>,
    /// Block producer signature
    pub signature: Signature,
}

impl Block {
    pub fn new(header: HeaderHash, txs: Vec<TransactionHash>, signature: Signature) -> Self {
        Self { header, txs, signature }
    }

    /// A block's hash is the same as the hash of its header
    pub fn hash(&self) -> HeaderHash {
        self.header
    }

    /// Generate a `Block` from a `BlockInfo`
    pub fn from_block_info(block_info: &BlockInfo) -> Self {
        let header = block_info.header.hash();
        let txs = block_info.txs.iter().map(|tx| tx.hash()).collect();
        let signature = block_info.signature;
        Self { header, txs, signature }
    }
}

/// Structure representing full block data, acting as
/// a wrapper struct over `Block`, enabling us to include
/// more information that might be used in different block
/// version, without affecting the original struct.
#[derive(Debug, Clone, SerialEncodable, SerialDecodable)]
pub struct BlockInfo {
    /// Block header data
    pub header: Header,
    /// Transactions payload
    pub txs: Vec<Transaction>,
    /// Block producer signature
    pub signature: Signature,
}

impl Default for BlockInfo {
    /// Represents the genesis block on current timestamp
    fn default() -> Self {
        Self {
            header: Header::default(),
            txs: vec![Transaction::default()],
            signature: Signature::dummy(),
        }
    }
}

impl BlockInfo {
    pub fn new(header: Header, txs: Vec<Transaction>, signature: Signature) -> Self {
        Self { header, txs, signature }
    }

    /// Generate an empty block for provided Header.
    /// Transactions and the producer signature must be added after.
    pub fn new_empty(header: Header) -> Self {
        let txs = vec![];
        let signature = Signature::dummy();
        Self { header, txs, signature }
    }

    /// A block's hash is the same as the hash of its header
    pub fn hash(&self) -> HeaderHash {
        self.header.hash()
    }

    /// Append a transaction to the block. Also adds it to the Merkle tree.
    /// Note: when we append a tx we rebuild the whole tree, so its preferable
    /// to append them all at once using `append_txs`.
    pub fn append_tx(&mut self, tx: Transaction) {
        let mut tree = MerkleTree::new(1);
        // Append existing block transactions to the tree
        for block_tx in &self.txs {
            append_tx_to_merkle_tree(&mut tree, block_tx);
        }
        // Append the new transaction
        append_tx_to_merkle_tree(&mut tree, &tx);
        self.txs.push(tx);
        // Grab the tree root and store it in the header
        self.header.root = tree.root(0).unwrap();
    }

    /// Append a vector of transactions to the block. Also adds them to the
    /// Merkle tree.
    /// Note: when we append txs we rebuild the whole tree, so its preferable
    /// to append them all at once.
    pub fn append_txs(&mut self, txs: Vec<Transaction>) {
        let mut tree = MerkleTree::new(1);
        // Append existing block transactions to the tree
        for block_tx in &self.txs {
            append_tx_to_merkle_tree(&mut tree, block_tx);
        }
        // Append the new transactions
        for tx in txs {
            append_tx_to_merkle_tree(&mut tree, &tx);
            self.txs.push(tx);
        }
        // Grab the tree root and store it in the header
        self.header.root = tree.root(0).unwrap();
    }

    /// Sign block header using provided secret key
    pub fn sign(&mut self, secret_key: &SecretKey) {
        self.signature = secret_key.sign(self.hash().inner());
    }
}

/// Auxiliary structure used to keep track of blocks order.
#[derive(Debug, SerialEncodable, SerialDecodable)]
pub struct BlockOrder {
    /// Block height
    pub height: u32,
    /// Block header hash of that height
    pub block: HeaderHash,
}

/// Auxiliary structure used to keep track of block ranking information.
/// Note: we only need height cummulative ranks, but we also keep its actual
/// ranks, so we can verify the sequence and/or know specific block height
/// ranks, if ever needed.
#[derive(Debug)]
pub struct BlockRanks {
    /// Block target rank
    pub target_rank: BigUint,
    /// Height cummulative targets rank
    pub targets_rank: BigUint,
    /// Block hash rank
    pub hash_rank: BigUint,
    /// Height cummulative hashes rank
    pub hashes_rank: BigUint,
}

impl BlockRanks {
    pub fn new(
        target_rank: BigUint,
        targets_rank: BigUint,
        hash_rank: BigUint,
        hashes_rank: BigUint,
    ) -> Self {
        Self { target_rank, targets_rank, hash_rank, hashes_rank }
    }
}

// Note: Doing all the imports here as this might get obselete if
// we implemented Encodable/Decodable for num_bigint::BigUint.
impl darkfi_serial::Encodable for BlockRanks {
    fn encode<S: std::io::Write>(&self, s: &mut S) -> std::io::Result<usize> {
        let mut len = 0;
        len += self.target_rank.to_bytes_be().encode(s)?;
        len += self.targets_rank.to_bytes_be().encode(s)?;
        len += self.hash_rank.to_bytes_be().encode(s)?;
        len += self.hashes_rank.to_bytes_be().encode(s)?;
        Ok(len)
    }
}

impl darkfi_serial::Decodable for BlockRanks {
    fn decode<D: std::io::Read>(d: &mut D) -> std::io::Result<Self> {
        let bytes: Vec<u8> = darkfi_serial::Decodable::decode(d)?;
        let target_rank: BigUint = BigUint::from_bytes_be(&bytes);
        let bytes: Vec<u8> = darkfi_serial::Decodable::decode(d)?;
        let targets_rank: BigUint = BigUint::from_bytes_be(&bytes);
        let bytes: Vec<u8> = darkfi_serial::Decodable::decode(d)?;
        let hash_rank: BigUint = BigUint::from_bytes_be(&bytes);
        let bytes: Vec<u8> = darkfi_serial::Decodable::decode(d)?;
        let hashes_rank: BigUint = BigUint::from_bytes_be(&bytes);
        let ret = Self { target_rank, targets_rank, hash_rank, hashes_rank };
        Ok(ret)
    }
}

/// Auxiliary structure used to keep track of block PoW difficulty information.
/// Note: we only need height cummulative difficulty, but we also keep its actual
/// difficulty, so we can verify the sequence and/or know specific block height
/// difficulty, if ever needed.
#[derive(Debug)]
pub struct BlockDifficulty {
    /// Block height number
    pub height: u32,
    /// Block creation timestamp
    pub timestamp: Timestamp,
    /// Height difficulty
    pub difficulty: BigUint,
    /// Height cummulative difficulty (total + height difficulty)
    pub cummulative_difficulty: BigUint,
    /// Block ranks
    pub ranks: BlockRanks,
}

impl BlockDifficulty {
    pub fn new(
        height: u32,
        timestamp: Timestamp,
        difficulty: BigUint,
        cummulative_difficulty: BigUint,
        ranks: BlockRanks,
    ) -> Self {
        Self { height, timestamp, difficulty, cummulative_difficulty, ranks }
    }

    /// Represents the genesis block difficulty
    pub fn genesis(timestamp: Timestamp) -> Self {
        let ranks = BlockRanks::new(
            BigUint::from(0u64),
            BigUint::from(0u64),
            BigUint::from(0u64),
            BigUint::from(0u64),
        );
        BlockDifficulty::new(0u32, timestamp, BigUint::from(0u64), BigUint::from(0u64), ranks)
    }
}

// Note: Doing all the imports here as this might get obselete if
// we implemented Encodable/Decodable for num_bigint::BigUint.
impl darkfi_serial::Encodable for BlockDifficulty {
    fn encode<S: std::io::Write>(&self, s: &mut S) -> std::io::Result<usize> {
        let mut len = 0;
        len += self.height.encode(s)?;
        len += self.timestamp.encode(s)?;
        len += self.difficulty.to_bytes_be().encode(s)?;
        len += self.cummulative_difficulty.to_bytes_be().encode(s)?;
        len += self.ranks.encode(s)?;
        Ok(len)
    }
}

impl darkfi_serial::Decodable for BlockDifficulty {
    fn decode<D: std::io::Read>(d: &mut D) -> std::io::Result<Self> {
        let height: u32 = darkfi_serial::Decodable::decode(d)?;
        let timestamp: Timestamp = darkfi_serial::Decodable::decode(d)?;
        let bytes: Vec<u8> = darkfi_serial::Decodable::decode(d)?;
        let difficulty: BigUint = BigUint::from_bytes_be(&bytes);
        let bytes: Vec<u8> = darkfi_serial::Decodable::decode(d)?;
        let cummulative_difficulty: BigUint = BigUint::from_bytes_be(&bytes);
        let ranks: BlockRanks = darkfi_serial::Decodable::decode(d)?;
        let ret = Self { height, timestamp, difficulty, cummulative_difficulty, ranks };
        Ok(ret)
    }
}

const SLED_BLOCK_TREE: &[u8] = b"_blocks";
const SLED_BLOCK_ORDER_TREE: &[u8] = b"_block_order";
const SLED_BLOCK_DIFFICULTY_TREE: &[u8] = b"_block_difficulty";

/// The `BlockStore` is a structure representing all `sled` trees related
/// to storing the blockchain's blocks information.
#[derive(Clone)]
pub struct BlockStore {
    /// Main `sled` tree, storing all the blockchain's blocks, where the
    /// key is the blocks' hash, and value is the serialized block.
    pub main: sled::Tree,
    /// The `sled` tree storing the order of the blockchain's blocks,
    /// where the key is the height number, and the value is the blocks'
    /// hash.
    pub order: sled::Tree,
    /// The `sled` tree storing the the difficulty information of the
    /// blockchain's blocks, where the key is the block height number,
    /// and the value is the blocks' hash.
    pub difficulty: sled::Tree,
}

impl BlockStore {
    /// Opens a new or existing `BlockStore` on the given sled database.
    pub fn new(db: &sled::Db) -> Result<Self> {
        let main = db.open_tree(SLED_BLOCK_TREE)?;
        let order = db.open_tree(SLED_BLOCK_ORDER_TREE)?;
        let difficulty = db.open_tree(SLED_BLOCK_DIFFICULTY_TREE)?;
        Ok(Self { main, order, difficulty })
    }

    /// Insert a slice of [`Block`] into the store's main tree.
    pub fn insert(&self, blocks: &[Block]) -> Result<Vec<HeaderHash>> {
        let (batch, ret) = self.insert_batch(blocks);
        self.main.apply_batch(batch)?;
        Ok(ret)
    }

    /// Insert a slice of `u32` and block hashes into the store's
    /// order tree.
    pub fn insert_order(&self, heights: &[u32], hashes: &[HeaderHash]) -> Result<()> {
        let batch = self.insert_batch_order(heights, hashes);
        self.order.apply_batch(batch)?;
        Ok(())
    }

    /// Insert a slice of [`BlockDifficulty`] into the store's
    /// difficulty tree.
    pub fn insert_difficulty(&self, block_difficulties: &[BlockDifficulty]) -> Result<()> {
        let batch = self.insert_batch_difficulty(block_difficulties);
        self.difficulty.apply_batch(batch)?;
        Ok(())
    }

    /// Generate the sled batch corresponding to an insert to the main
    /// tree, so caller can handle the write operation.
    /// The block's hash() function output is used as the key,
    /// while value is the serialized [`Block`] itself.
    /// On success, the function returns the block hashes in the same order.
    pub fn insert_batch(&self, blocks: &[Block]) -> (sled::Batch, Vec<HeaderHash>) {
        let mut ret = Vec::with_capacity(blocks.len());
        let mut batch = sled::Batch::default();

        for block in blocks {
            let blockhash = block.hash();
            batch.insert(blockhash.inner(), serialize(block));
            ret.push(blockhash);
        }

        (batch, ret)
    }

    /// Generate the sled batch corresponding to an insert to the order
    /// tree, so caller can handle the write operation.
    /// The block height is used as the key, and the block hash is used as value.
    pub fn insert_batch_order(&self, heights: &[u32], hashes: &[HeaderHash]) -> sled::Batch {
        let mut batch = sled::Batch::default();

        for (i, height) in heights.iter().enumerate() {
            batch.insert(&height.to_be_bytes(), hashes[i].inner());
        }

        batch
    }

    /// Generate the sled batch corresponding to an insert to the difficulty
    /// tree, so caller can handle the write operation.
    /// The block's height number is used as the key, while value is
    //  the serialized [`BlockDifficulty`] itself.
    pub fn insert_batch_difficulty(&self, block_difficulties: &[BlockDifficulty]) -> sled::Batch {
        let mut batch = sled::Batch::default();

        for block_difficulty in block_difficulties {
            batch.insert(&block_difficulty.height.to_be_bytes(), serialize(block_difficulty));
        }

        batch
    }

    /// Check if the store's main tree contains a given block hash.
    pub fn contains(&self, blockhash: &HeaderHash) -> Result<bool> {
        Ok(self.main.contains_key(blockhash.inner())?)
    }

    /// Check if the store's order tree contains a given height.
    pub fn contains_order(&self, height: u32) -> Result<bool> {
        Ok(self.order.contains_key(height.to_be_bytes())?)
    }

    /// Fetch given block hashes from the store's main tree.
    /// The resulting vector contains `Option`, which is `Some` if the block
    /// was found in the block store, and otherwise it is `None`, if it has not.
    /// The second parameter is a boolean which tells the function to fail in
    /// case at least one block was not found.
    pub fn get(&self, block_hashes: &[HeaderHash], strict: bool) -> Result<Vec<Option<Block>>> {
        let mut ret = Vec::with_capacity(block_hashes.len());

        for hash in block_hashes {
            if let Some(found) = self.main.get(hash.inner())? {
                let block = deserialize(&found)?;
                ret.push(Some(block));
                continue
            }
            if strict {
                return Err(Error::BlockNotFound(hash.as_string()))
            }
            ret.push(None);
        }

        Ok(ret)
    }

    /// Fetch given heights from the store's order tree.
    /// The resulting vector contains `Option`, which is `Some` if the height
    /// was found in the block order store, and otherwise it is `None`, if it has not.
    /// The second parameter is a boolean which tells the function to fail in
    /// case at least one height was not found.
    pub fn get_order(&self, heights: &[u32], strict: bool) -> Result<Vec<Option<HeaderHash>>> {
        let mut ret = Vec::with_capacity(heights.len());

        for height in heights {
            if let Some(found) = self.order.get(height.to_be_bytes())? {
                let block_hash = deserialize(&found)?;
                ret.push(Some(block_hash));
                continue
            }
            if strict {
                return Err(Error::BlockHeightNotFound(*height))
            }
            ret.push(None);
        }

        Ok(ret)
    }

    /// Fetch given block height numbers from the store's difficulty tree.
    /// The resulting vector contains `Option`, which is `Some` if the block
    /// height number was found in the block difficulties store, and otherwise
    /// it is `None`, if it has not.
    /// The second parameter is a boolean which tells the function to fail in
    /// case at least one block height number was not found.
    pub fn get_difficulty(
        &self,
        heights: &[u32],
        strict: bool,
    ) -> Result<Vec<Option<BlockDifficulty>>> {
        let mut ret = Vec::with_capacity(heights.len());

        for height in heights {
            if let Some(found) = self.difficulty.get(height.to_be_bytes())? {
                let block_difficulty = deserialize(&found)?;
                ret.push(Some(block_difficulty));
                continue
            }
            if strict {
                return Err(Error::BlockDifficultyNotFound(*height))
            }
            ret.push(None);
        }

        Ok(ret)
    }

    /// Retrieve all blocks from the store's main tree in the form of a
    /// tuple (`hash`, `block`).
    /// Be careful as this will try to load everything in memory.
    pub fn get_all(&self) -> Result<Vec<(HeaderHash, Block)>> {
        let mut blocks = vec![];

        for block in self.main.iter() {
            blocks.push(parse_record(block.unwrap())?);
        }

        Ok(blocks)
    }

    /// Retrieve complete order from the store's order tree in the form
    /// of a vector containing (`height`, `hash`) tuples.
    /// Be careful as this will try to load everything in memory.
    pub fn get_all_order(&self) -> Result<Vec<(u32, HeaderHash)>> {
        let mut order = vec![];

        for record in self.order.iter() {
            order.push(parse_u32_key_record(record.unwrap())?);
        }

        Ok(order)
    }

    /// Retrieve all block difficulties from the store's difficulty tree in
    /// the form of a vector containing (`height`, `difficulty`) tuples.
    /// Be careful as this will try to load everything in memory.
    pub fn get_all_difficulty(&self) -> Result<Vec<(u32, BlockDifficulty)>> {
        let mut block_difficulties = vec![];

        for record in self.difficulty.iter() {
            block_difficulties.push(parse_u32_key_record(record.unwrap())?);
        }

        Ok(block_difficulties)
    }

    /// Fetch n hashes before given height. In the iteration, if an order
    /// height is not found, the iteration stops and the function returns what
    /// it has found so far in the store's order tree.
    pub fn get_before(&self, height: u32, n: usize) -> Result<Vec<HeaderHash>> {
        let mut ret = vec![];

        let mut key = height;
        let mut counter = 0;
        while counter < n {
            if let Some(found) = self.order.get_lt(key.to_be_bytes())? {
                let (height, hash) = parse_u32_key_record(found)?;
                key = height;
                ret.push(hash);
                counter += 1;
                continue
            }
            break
        }

        Ok(ret.iter().rev().copied().collect())
    }

    /// Fetch the first block hash in the order tree, based on the `Ord`
    /// implementation for `Vec<u8>`.
    pub fn get_first(&self) -> Result<(u32, HeaderHash)> {
        let Some(found) = self.order.first()? else { return Err(Error::BlockHeightNotFound(0u32)) };
        let (height, hash) = parse_u32_key_record(found)?;

        Ok((height, hash))
    }

    /// Fetch the last block hash in the order tree, based on the `Ord`
    /// implementation for `Vec<u8>`.
    pub fn get_last(&self) -> Result<(u32, HeaderHash)> {
        let found = self.order.last()?.unwrap();
        let (height, hash) = parse_u32_key_record(found)?;

        Ok((height, hash))
    }

    /// Fetch the last record in the difficulty tree, based on the `Ord`
    /// implementation for `Vec<u8>`. If the tree is empty,
    /// returns `None`.
    pub fn get_last_difficulty(&self) -> Result<Option<BlockDifficulty>> {
        let Some(found) = self.difficulty.last()? else { return Ok(None) };
        let block_difficulty = deserialize(&found.1)?;
        Ok(Some(block_difficulty))
    }

    /// Fetch the last N records from the store's difficulty tree, in order.
    pub fn get_last_n_difficulties(&self, n: usize) -> Result<Vec<BlockDifficulty>> {
        // Build an iterator to retrieve last N records
        let records = self.difficulty.iter().rev().take(n);
        // Since the iterator grabs in right -> left order,
        // we deserialize found records, and push them in reverse order
        let mut last_n = vec![];
        for record in records {
            last_n.insert(0, deserialize(&record?.1)?);
        }

        Ok(last_n)
    }

    /// Retrieve store's order tree records count.
    pub fn len(&self) -> usize {
        self.order.len()
    }

    /// Check if store's order tree contains any records.
    pub fn is_empty(&self) -> bool {
        self.order.is_empty()
    }
}

/// Overlay structure over a [`BlockStore`] instance.
pub struct BlockStoreOverlay(SledDbOverlayPtr);

impl BlockStoreOverlay {
    pub fn new(overlay: &SledDbOverlayPtr) -> Result<Self> {
        overlay.lock().unwrap().open_tree(SLED_BLOCK_TREE)?;
        overlay.lock().unwrap().open_tree(SLED_BLOCK_ORDER_TREE)?;
        overlay.lock().unwrap().open_tree(SLED_BLOCK_DIFFICULTY_TREE)?;
        Ok(Self(overlay.clone()))
    }

    /// Insert a slice of [`Block`] into the overlay's main tree.
    /// The block's hash() function output is used as the key,
    /// while value is the serialized [`Block`] itself.
    /// On success, the function returns the block hashes in the same order.
    pub fn insert(&self, blocks: &[Block]) -> Result<Vec<HeaderHash>> {
        let mut ret = Vec::with_capacity(blocks.len());
        let mut lock = self.0.lock().unwrap();

        for block in blocks {
            let blockhash = block.hash();
            lock.insert(SLED_BLOCK_TREE, blockhash.inner(), &serialize(block))?;
            ret.push(blockhash);
        }

        Ok(ret)
    }

    /// Insert a slice of `u32` and block hashes into overlay's order tree.
    /// The block height is used as the key, and the blockhash is used as value.
    pub fn insert_order(&self, heights: &[u32], hashes: &[HeaderHash]) -> Result<()> {
        if heights.len() != hashes.len() {
            return Err(Error::InvalidInputLengths)
        }

        let mut lock = self.0.lock().unwrap();

        for (i, height) in heights.iter().enumerate() {
            lock.insert(SLED_BLOCK_ORDER_TREE, &height.to_be_bytes(), hashes[i].inner())?;
        }

        Ok(())
    }

    /// Insert a slice of [`BlockDifficulty`] into the overlay's difficulty tree.
    pub fn insert_difficulty(&self, block_difficulties: &[BlockDifficulty]) -> Result<()> {
        let mut lock = self.0.lock().unwrap();

        for block_difficulty in block_difficulties {
            lock.insert(
                SLED_BLOCK_DIFFICULTY_TREE,
                &block_difficulty.height.to_be_bytes(),
                &serialize(block_difficulty),
            )?;
        }

        Ok(())
    }

    /// Fetch given block hashes from the overlay's main tree.
    /// The resulting vector contains `Option`, which is `Some` if the block
    /// was found in the overlay, and otherwise it is `None`, if it has not.
    /// The second parameter is a boolean which tells the function to fail in
    /// case at least one block was not found.
    pub fn get(&self, block_hashes: &[HeaderHash], strict: bool) -> Result<Vec<Option<Block>>> {
        let mut ret = Vec::with_capacity(block_hashes.len());
        let lock = self.0.lock().unwrap();

        for hash in block_hashes {
            if let Some(found) = lock.get(SLED_BLOCK_TREE, hash.inner())? {
                let block = deserialize(&found)?;
                ret.push(Some(block));
                continue
            }
            if strict {
                return Err(Error::BlockNotFound(hash.as_string()))
            }
            ret.push(None);
        }

        Ok(ret)
    }

    /// Fetch given heights from the overlay's order tree.
    /// The resulting vector contains `Option`, which is `Some` if the height
    /// was found in the overlay, and otherwise it is `None`, if it has not.
    /// The second parameter is a boolean which tells the function to fail in
    /// case at least one height was not found.
    pub fn get_order(&self, heights: &[u32], strict: bool) -> Result<Vec<Option<HeaderHash>>> {
        let mut ret = Vec::with_capacity(heights.len());
        let lock = self.0.lock().unwrap();

        for height in heights {
            if let Some(found) = lock.get(SLED_BLOCK_ORDER_TREE, &height.to_be_bytes())? {
                let block_hash = deserialize(&found)?;
                ret.push(Some(block_hash));
                continue
            }
            if strict {
                return Err(Error::BlockHeightNotFound(*height))
            }
            ret.push(None);
        }

        Ok(ret)
    }

    /// Fetch the last block hash in the overlay's order tree, based on the `Ord`
    /// implementation for `Vec<u8>`.
    pub fn get_last(&self) -> Result<(u32, HeaderHash)> {
        let found = match self.0.lock().unwrap().last(SLED_BLOCK_ORDER_TREE)? {
            Some(b) => b,
            None => return Err(Error::BlockHeightNotFound(0u32)),
        };
        let (height, hash) = parse_u32_key_record(found)?;

        Ok((height, hash))
    }

    /// Check if overlay's order tree contains any records.
    pub fn is_empty(&self) -> Result<bool> {
        Ok(self.0.lock().unwrap().is_empty(SLED_BLOCK_ORDER_TREE)?)
    }
}

/// Auxiliary function to append a transaction to a Merkle tree.
pub fn append_tx_to_merkle_tree(tree: &mut MerkleTree, tx: &Transaction) {
    let mut buf = [0u8; 64];
    buf[..32].copy_from_slice(tx.hash().inner());
    let leaf = pallas::Base::from_uniform_bytes(&buf);
    tree.append(leaf.into());
}