darkfi/blockchain/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/* This file is part of DarkFi (https://dark.fi)
 *
 * Copyright (C) 2020-2024 Dyne.org foundation
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use std::sync::{Arc, Mutex};

use darkfi_sdk::tx::TransactionHash;
use log::debug;
use sled_overlay::{sled, sled::Transactional};

use crate::{tx::Transaction, util::time::Timestamp, Error, Result};

/// Block related definitions and storage implementations
pub mod block_store;
pub use block_store::{
    Block, BlockDifficulty, BlockInfo, BlockStore, BlockStoreOverlay, SLED_BLOCK_DIFFICULTY_TREE,
    SLED_BLOCK_ORDER_TREE, SLED_BLOCK_STATE_DIFF_TREE, SLED_BLOCK_TREE,
};

/// Header definition and storage implementation
pub mod header_store;
pub use header_store::{
    Header, HeaderHash, HeaderStore, HeaderStoreOverlay, SLED_HEADER_TREE, SLED_SYNC_HEADER_TREE,
};

/// Transactions related storage implementations
pub mod tx_store;
pub use tx_store::{
    TxStore, TxStoreOverlay, SLED_PENDING_TX_ORDER_TREE, SLED_PENDING_TX_TREE,
    SLED_TX_LOCATION_TREE, SLED_TX_TREE,
};

/// Contracts and Wasm storage implementations
pub mod contract_store;
pub use contract_store::{
    ContractStore, ContractStoreOverlay, SLED_BINCODE_TREE, SLED_CONTRACTS_TREE,
};

/// Structure holding all sled trees that define the concept of Blockchain.
#[derive(Clone)]
pub struct Blockchain {
    /// Main pointer to the sled db connection
    pub sled_db: sled::Db,
    /// Headers sled tree
    pub headers: HeaderStore,
    /// Blocks sled tree
    pub blocks: BlockStore,
    /// Transactions related sled trees
    pub transactions: TxStore,
    /// Contracts related sled trees
    pub contracts: ContractStore,
}

impl Blockchain {
    /// Instantiate a new `Blockchain` with the given `sled` database.
    pub fn new(db: &sled::Db) -> Result<Self> {
        let headers = HeaderStore::new(db)?;
        let blocks = BlockStore::new(db)?;
        let transactions = TxStore::new(db)?;
        let contracts = ContractStore::new(db)?;

        Ok(Self { sled_db: db.clone(), headers, blocks, transactions, contracts })
    }

    /// Insert a given [`BlockInfo`] into the blockchain database.
    /// This functions wraps all the logic of separating the block into specific
    /// data that can be fed into the different trees of the database.
    /// Upon success, the functions returns the block hash that
    /// were given and appended to the ledger.
    pub fn add_block(&self, block: &BlockInfo) -> Result<HeaderHash> {
        let mut trees = vec![];
        let mut batches = vec![];

        // Store header
        let (headers_batch, _) = self.headers.insert_batch(&[block.header.clone()]);
        trees.push(self.headers.main.clone());
        batches.push(headers_batch);

        // Store block
        let blk: Block = Block::from_block_info(block);
        let (bocks_batch, block_hashes) = self.blocks.insert_batch(&[blk]);
        let block_hash = block_hashes[0];
        let block_hash_vec = [block_hash];
        trees.push(self.blocks.main.clone());
        batches.push(bocks_batch);

        // Store block order
        let blocks_order_batch =
            self.blocks.insert_batch_order(&[block.header.height], &block_hash_vec);
        trees.push(self.blocks.order.clone());
        batches.push(blocks_order_batch);

        // Store transactions
        let (txs_batch, txs_hashes) = self.transactions.insert_batch(&block.txs);
        trees.push(self.transactions.main.clone());
        batches.push(txs_batch);

        // Store transactions_locations
        let txs_locations_batch =
            self.transactions.insert_batch_location(&txs_hashes, block.header.height);
        trees.push(self.transactions.location.clone());
        batches.push(txs_locations_batch);

        // Perform an atomic transaction over the trees and apply the batches.
        self.atomic_write(&trees, &batches)?;

        Ok(block_hash)
    }

    /// Check if the given [`BlockInfo`] is in the database and all trees.
    pub fn has_block(&self, block: &BlockInfo) -> Result<bool> {
        let blockhash = match self.blocks.get_order(&[block.header.height], true) {
            Ok(v) => v[0].unwrap(),
            Err(_) => return Ok(false),
        };

        // Check if we have all transactions
        let txs: Vec<TransactionHash> = block.txs.iter().map(|tx| tx.hash()).collect();
        if self.transactions.get(&txs, true).is_err() {
            return Ok(false)
        }

        // Check provided info produces the same hash
        Ok(blockhash == block.hash())
    }

    /// Retrieve [`BlockInfo`]s by given hashes. Fails if any of them is not found.
    pub fn get_blocks_by_hash(&self, hashes: &[HeaderHash]) -> Result<Vec<BlockInfo>> {
        let blocks = self.blocks.get(hashes, true)?;
        let blocks: Vec<Block> = blocks.iter().map(|x| x.clone().unwrap()).collect();
        let ret = self.get_blocks_infos(&blocks)?;

        Ok(ret)
    }

    /// Retrieve all [`BlockInfo`] for given slice of [`Block`].
    /// Fails if any of them is not found
    fn get_blocks_infos(&self, blocks: &[Block]) -> Result<Vec<BlockInfo>> {
        let mut ret = Vec::with_capacity(blocks.len());
        for block in blocks {
            let headers = self.headers.get(&[block.header], true)?;
            // Since we used strict get, its safe to unwrap here
            let header = headers[0].clone().unwrap();

            let txs = self.transactions.get(&block.txs, true)?;
            let txs = txs.iter().map(|x| x.clone().unwrap()).collect();

            let info = BlockInfo::new(header, txs, block.signature);
            ret.push(info);
        }

        Ok(ret)
    }

    /// Retrieve [`BlockInfo`]s by given heights. Does not fail if any of them are not found.
    pub fn get_blocks_by_heights(&self, heights: &[u32]) -> Result<Vec<BlockInfo>> {
        debug!(target: "blockchain", "get_blocks_by_heights(): {:?}", heights);
        let blockhashes = self.blocks.get_order(heights, false)?;

        let mut hashes = vec![];
        for i in blockhashes.into_iter().flatten() {
            hashes.push(i);
        }

        self.get_blocks_by_hash(&hashes)
    }

    /// Retrieve n headers before given block height.
    pub fn get_headers_before(&self, height: u32, n: usize) -> Result<Vec<Header>> {
        debug!(target: "blockchain", "get_headers_before(): {} -> {}", height, n);
        let hashes = self.blocks.get_before(height, n)?;
        let headers = self.headers.get(&hashes, true)?;
        Ok(headers.iter().map(|h| h.clone().unwrap()).collect())
    }

    /// Retrieve stored blocks count
    pub fn len(&self) -> usize {
        self.blocks.len()
    }

    /// Retrieve stored txs count
    pub fn txs_len(&self) -> usize {
        self.transactions.len()
    }

    /// Check if blockchain contains any blocks
    pub fn is_empty(&self) -> bool {
        self.blocks.is_empty()
    }

    /// Retrieve genesis (first) block height and hash.
    pub fn genesis(&self) -> Result<(u32, HeaderHash)> {
        self.blocks.get_first()
    }

    /// Retrieve genesis (first) block info.
    pub fn genesis_block(&self) -> Result<BlockInfo> {
        let (_, hash) = self.genesis()?;
        Ok(self.get_blocks_by_hash(&[hash])?[0].clone())
    }

    /// Retrieve the last block height and hash.
    pub fn last(&self) -> Result<(u32, HeaderHash)> {
        self.blocks.get_last()
    }

    /// Retrieve the last block info.
    pub fn last_block(&self) -> Result<BlockInfo> {
        let (_, hash) = self.last()?;
        Ok(self.get_blocks_by_hash(&[hash])?[0].clone())
    }

    /// Retrieve the last block difficulty. If the tree is empty,
    /// returns `BlockDifficulty::genesis` difficulty.
    pub fn last_block_difficulty(&self) -> Result<BlockDifficulty> {
        if let Some(found) = self.blocks.get_last_difficulty()? {
            return Ok(found)
        }

        let genesis_block = self.genesis_block()?;
        Ok(BlockDifficulty::genesis(genesis_block.header.timestamp))
    }

    /// Check if block order for the given height is in the database.
    pub fn has_height(&self, height: u32) -> Result<bool> {
        let vec = match self.blocks.get_order(&[height], true) {
            Ok(v) => v,
            Err(_) => return Ok(false),
        };
        Ok(!vec.is_empty())
    }

    /// Insert a given slice of pending transactions into the blockchain database.
    /// On success, the function returns the transaction hashes in the same order
    /// as the input transactions.
    pub fn add_pending_txs(&self, txs: &[Transaction]) -> Result<Vec<TransactionHash>> {
        let (txs_batch, txs_hashes) = self.transactions.insert_batch_pending(txs);
        let txs_order_batch = self.transactions.insert_batch_pending_order(&txs_hashes)?;

        // Perform an atomic transaction over the trees and apply the batches.
        let trees = [self.transactions.pending.clone(), self.transactions.pending_order.clone()];
        let batches = [txs_batch, txs_order_batch];
        self.atomic_write(&trees, &batches)?;

        Ok(txs_hashes)
    }

    /// Retrieve all transactions from the pending tx store.
    /// Be careful as this will try to load everything in memory.
    pub fn get_pending_txs(&self) -> Result<Vec<Transaction>> {
        let txs = self.transactions.get_all_pending()?;
        let indexes = self.transactions.get_all_pending_order()?;
        if txs.len() != indexes.len() {
            return Err(Error::InvalidInputLengths)
        }

        let mut ret = Vec::with_capacity(txs.len());
        for index in indexes {
            ret.push(txs.get(&index.1).unwrap().clone());
        }

        Ok(ret)
    }

    /// Remove a given slice of pending transactions from the blockchain database.
    pub fn remove_pending_txs(&self, txs: &[Transaction]) -> Result<()> {
        let txs_hashes: Vec<TransactionHash> = txs.iter().map(|tx| tx.hash()).collect();
        self.remove_pending_txs_hashes(&txs_hashes)
    }

    /// Remove a given slice of pending transactions hashes from the blockchain database.
    pub fn remove_pending_txs_hashes(&self, txs: &[TransactionHash]) -> Result<()> {
        let indexes = self.transactions.get_all_pending_order()?;
        // We could do indexes.iter().map(|x| txs.contains(x.1)).collect.map(|x| x.0).collect
        // but this is faster since we don't do the second iteration
        let mut removed_indexes = vec![];
        for index in indexes {
            if txs.contains(&index.1) {
                removed_indexes.push(index.0);
            }
        }

        let txs_batch = self.transactions.remove_batch_pending(txs);
        let txs_order_batch = self.transactions.remove_batch_pending_order(&removed_indexes);

        // Perform an atomic transaction over the trees and apply the batches.
        let trees = [self.transactions.pending.clone(), self.transactions.pending_order.clone()];
        let batches = [txs_batch, txs_order_batch];
        self.atomic_write(&trees, &batches)?;

        Ok(())
    }

    /// Auxiliary function to write to multiple trees completely atomic.
    fn atomic_write(&self, trees: &[sled::Tree], batches: &[sled::Batch]) -> Result<()> {
        if trees.len() != batches.len() {
            return Err(Error::InvalidInputLengths)
        }

        trees.transaction(|trees| {
            for (index, tree) in trees.iter().enumerate() {
                tree.apply_batch(&batches[index])?;
            }

            Ok::<(), sled::transaction::ConflictableTransactionError<sled::Error>>(())
        })?;

        Ok(())
    }

    /// Retrieve all blocks contained in the blockchain in order.
    /// Be careful as this will try to load everything in memory.
    pub fn get_all(&self) -> Result<Vec<BlockInfo>> {
        let order = self.blocks.get_all_order()?;
        let order: Vec<HeaderHash> = order.iter().map(|x| x.1).collect();
        let blocks = self.get_blocks_by_hash(&order)?;

        Ok(blocks)
    }

    /// Retrieve [`BlockInfo`]s by given heights range.
    pub fn get_by_range(&self, start: u32, end: u32) -> Result<Vec<BlockInfo>> {
        let blockhashes = self.blocks.get_order_by_range(start, end)?;
        let hashes: Vec<HeaderHash> = blockhashes.into_iter().map(|(_, hash)| hash).collect();
        self.get_blocks_by_hash(&hashes)
    }

    /// Retrieve last 'N' [`BlockInfo`]s from the blockchain.
    pub fn get_last_n(&self, n: usize) -> Result<Vec<BlockInfo>> {
        let records = self.blocks.get_last_n_orders(n)?;

        let mut last_n = vec![];
        for record in records {
            let header_hash = record.1;
            let blocks = self.get_blocks_by_hash(&[header_hash])?;
            for block in blocks {
                last_n.push(block.clone());
            }
        }

        Ok(last_n)
    }

    /// Auxiliary function to reset the blockchain and consensus state
    /// to the provided block height.
    pub fn reset_to_height(&self, height: u32) -> Result<()> {
        // First we grab the last block height
        let (last, _) = self.last()?;

        // Check if request height is after our last height
        if height >= last {
            return Ok(())
        }

        // Grab all state diffs until requested height going backwards
        let heights: Vec<u32> = (height + 1..=last).rev().collect();
        let diffs = self.blocks.get_state_diff(&heights, true)?;

        // Create an overlay to apply the reverse diffs
        let overlay = BlockchainOverlay::new(self)?;

        // Apply the inverse diffs sequence
        let overlay_lock = overlay.lock().unwrap();
        let mut lock = overlay_lock.overlay.lock().unwrap();
        for diff in diffs {
            // Since we used strict retrieval it's safe to unwrap here
            let inverse_diff = diff.unwrap().inverse();
            lock.add_diff(&inverse_diff)?;
            lock.apply_diff(&inverse_diff)?;
            self.sled_db.flush()?;
        }
        drop(lock);
        drop(overlay_lock);

        Ok(())
    }
}

/// Atomic pointer to sled db overlay.
pub type SledDbOverlayPtr = Arc<Mutex<sled_overlay::SledDbOverlay>>;

/// Atomic pointer to blockchain overlay.
pub type BlockchainOverlayPtr = Arc<Mutex<BlockchainOverlay>>;

/// Overlay structure over a [`Blockchain`] instance.
pub struct BlockchainOverlay {
    /// Main [`sled_overlay::SledDbOverlay`] to the sled db connection
    pub overlay: SledDbOverlayPtr,
    /// Headers overlay
    pub headers: HeaderStoreOverlay,
    /// Blocks overlay
    pub blocks: BlockStoreOverlay,
    /// Transactions overlay
    pub transactions: TxStoreOverlay,
    /// Contract overlay
    pub contracts: ContractStoreOverlay,
}

impl BlockchainOverlay {
    /// Instantiate a new `BlockchainOverlay` over the given [`Blockchain`] instance.
    pub fn new(blockchain: &Blockchain) -> Result<BlockchainOverlayPtr> {
        // Here we configure all our blockchain sled trees to be protected in the overlay
        let protected_trees = vec![
            SLED_BLOCK_TREE,
            SLED_BLOCK_ORDER_TREE,
            SLED_BLOCK_DIFFICULTY_TREE,
            SLED_BLOCK_STATE_DIFF_TREE,
            SLED_HEADER_TREE,
            SLED_SYNC_HEADER_TREE,
            SLED_TX_TREE,
            SLED_TX_LOCATION_TREE,
            SLED_PENDING_TX_TREE,
            SLED_PENDING_TX_ORDER_TREE,
            SLED_CONTRACTS_TREE,
            SLED_BINCODE_TREE,
        ];
        let overlay = Arc::new(Mutex::new(sled_overlay::SledDbOverlay::new(
            &blockchain.sled_db,
            protected_trees,
        )));
        let headers = HeaderStoreOverlay::new(&overlay)?;
        let blocks = BlockStoreOverlay::new(&overlay)?;
        let transactions = TxStoreOverlay::new(&overlay)?;
        let contracts = ContractStoreOverlay::new(&overlay)?;

        Ok(Arc::new(Mutex::new(Self { overlay, headers, blocks, transactions, contracts })))
    }

    /// Check if blockchain contains any blocks
    pub fn is_empty(&self) -> Result<bool> {
        self.blocks.is_empty()
    }

    /// Retrieve the last block height and hash.
    pub fn last(&self) -> Result<(u32, HeaderHash)> {
        self.blocks.get_last()
    }

    /// Retrieve the last block info.
    pub fn last_block(&self) -> Result<BlockInfo> {
        let (_, hash) = self.last()?;
        Ok(self.get_blocks_by_hash(&[hash])?[0].clone())
    }

    /// Retrieve the last block height.
    pub fn last_block_height(&self) -> Result<u32> {
        Ok(self.last()?.0)
    }

    /// Retrieve the last block timestamp.
    pub fn last_block_timestamp(&self) -> Result<Timestamp> {
        let (_, hash) = self.last()?;
        Ok(self.get_blocks_by_hash(&[hash])?[0].header.timestamp)
    }

    /// Insert a given [`BlockInfo`] into the overlay.
    /// This functions wraps all the logic of separating the block into specific
    /// data that can be fed into the different trees of the overlay.
    /// Upon success, the functions returns the block hash that
    /// were given and appended to the overlay.
    /// Since we are adding to the overlay, we don't need to exeucte
    /// the writes atomically.
    pub fn add_block(&self, block: &BlockInfo) -> Result<HeaderHash> {
        // Store header
        self.headers.insert(&[block.header.clone()])?;

        // Store block
        let blk: Block = Block::from_block_info(block);
        let txs_hashes = blk.txs.clone();
        let block_hash = self.blocks.insert(&[blk])?[0];
        let block_hash_vec = [block_hash];

        // Store block order
        self.blocks.insert_order(&[block.header.height], &block_hash_vec)?;

        // Store transactions
        self.transactions.insert(&block.txs)?;

        // Store transactions locations
        self.transactions.insert_location(&txs_hashes, block.header.height)?;

        Ok(block_hash)
    }

    /// Check if the given [`BlockInfo`] is in the database and all trees.
    pub fn has_block(&self, block: &BlockInfo) -> Result<bool> {
        let blockhash = match self.blocks.get_order(&[block.header.height], true) {
            Ok(v) => v[0].unwrap(),
            Err(_) => return Ok(false),
        };

        // Check if we have all transactions
        let txs: Vec<TransactionHash> = block.txs.iter().map(|tx| tx.hash()).collect();
        if self.transactions.get(&txs, true).is_err() {
            return Ok(false)
        }

        // Check provided info produces the same hash
        Ok(blockhash == block.hash())
    }

    /// Retrieve [`Header`]s by given hashes. Fails if any of them is not found.
    pub fn get_headers_by_hash(&self, hashes: &[HeaderHash]) -> Result<Vec<Header>> {
        let headers = self.headers.get(hashes, true)?;
        let ret: Vec<Header> = headers.iter().map(|x| x.clone().unwrap()).collect();

        Ok(ret)
    }

    /// Retrieve [`BlockInfo`]s by given hashes. Fails if any of them is not found.
    pub fn get_blocks_by_hash(&self, hashes: &[HeaderHash]) -> Result<Vec<BlockInfo>> {
        let blocks = self.blocks.get(hashes, true)?;
        let blocks: Vec<Block> = blocks.iter().map(|x| x.clone().unwrap()).collect();
        let ret = self.get_blocks_infos(&blocks)?;

        Ok(ret)
    }

    /// Retrieve all [`BlockInfo`] for given slice of [`Block`].
    /// Fails if any of them is not found
    fn get_blocks_infos(&self, blocks: &[Block]) -> Result<Vec<BlockInfo>> {
        let mut ret = Vec::with_capacity(blocks.len());
        for block in blocks {
            let headers = self.headers.get(&[block.header], true)?;
            // Since we used strict get, its safe to unwrap here
            let header = headers[0].clone().unwrap();

            let txs = self.transactions.get(&block.txs, true)?;
            let txs = txs.iter().map(|x| x.clone().unwrap()).collect();

            let info = BlockInfo::new(header, txs, block.signature);
            ret.push(info);
        }

        Ok(ret)
    }

    /// Retrieve [`Block`]s by given hashes and return their transactions hashes.
    pub fn get_blocks_txs_hashes(&self, hashes: &[HeaderHash]) -> Result<Vec<TransactionHash>> {
        let blocks = self.blocks.get(hashes, true)?;
        let mut ret = vec![];
        for block in blocks {
            ret.extend_from_slice(&block.unwrap().txs);
        }

        Ok(ret)
    }

    /// Checkpoint overlay so we can revert to it, if needed.
    pub fn checkpoint(&self) {
        self.overlay.lock().unwrap().checkpoint();
    }

    /// Revert to current overlay checkpoint.
    pub fn revert_to_checkpoint(&self) -> Result<()> {
        self.overlay.lock().unwrap().revert_to_checkpoint()?;

        Ok(())
    }

    /// Auxiliary function to create a full clone using SledDbOverlay::clone,
    /// generating new pointers for the underlying overlays.
    pub fn full_clone(&self) -> Result<BlockchainOverlayPtr> {
        let overlay = Arc::new(Mutex::new(self.overlay.lock().unwrap().clone()));
        let headers = HeaderStoreOverlay::new(&overlay)?;
        let blocks = BlockStoreOverlay::new(&overlay)?;
        let transactions = TxStoreOverlay::new(&overlay)?;
        let contracts = ContractStoreOverlay::new(&overlay)?;

        Ok(Arc::new(Mutex::new(Self { overlay, headers, blocks, transactions, contracts })))
    }
}