darkfi/event_graph/event.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/* This file is part of DarkFi (https://dark.fi)
*
* Copyright (C) 2020-2025 Dyne.org foundation
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use std::{collections::HashSet, time::UNIX_EPOCH};
use darkfi_serial::{async_trait, deserialize_async, Encodable, SerialDecodable, SerialEncodable};
use sled_overlay::{sled, SledTreeOverlay};
use crate::Result;
use super::{
util::next_rotation_timestamp, EventGraph, EVENT_TIME_DRIFT, INITIAL_GENESIS, NULL_ID,
N_EVENT_PARENTS,
};
/// Representation of an event in the Event Graph
#[derive(Debug, Clone, PartialEq, SerialEncodable, SerialDecodable)]
pub struct Event {
/// Timestamp of the event in whole seconds
pub timestamp: u64,
/// Content of the event
pub content: Vec<u8>,
/// Parent nodes in the event DAG
pub parents: [blake3::Hash; N_EVENT_PARENTS],
/// DAG layer index of the event
pub layer: u64,
}
impl Event {
/// Create a new event with the given data and an [`EventGraph`] reference.
/// The timestamp of the event will be the current time, and the parents
/// will be `N_EVENT_PARENTS` from the current event graph unreferenced tips.
/// The parents can also include NULL, but this should be handled by the rest
/// of the codebase.
pub async fn new(data: Vec<u8>, event_graph: &EventGraph) -> Self {
let (layer, parents) = event_graph.get_next_layer_with_parents().await;
Self {
timestamp: UNIX_EPOCH.elapsed().unwrap().as_millis() as u64,
content: data,
parents,
layer,
}
}
/// Same as `Event::new()` but allows specifying the timestamp explicitly.
pub async fn with_timestamp(timestamp: u64, data: Vec<u8>, event_graph: &EventGraph) -> Self {
let (layer, parents) = event_graph.get_next_layer_with_parents().await;
Self { timestamp, content: data, parents, layer }
}
/// Hash the [`Event`] to retrieve its ID
pub fn id(&self) -> blake3::Hash {
let mut hasher = blake3::Hasher::new();
self.timestamp.encode(&mut hasher).unwrap();
self.content.encode(&mut hasher).unwrap();
self.parents.encode(&mut hasher).unwrap();
self.layer.encode(&mut hasher).unwrap();
hasher.finalize()
}
/// Return a reference to the event's content
pub fn content(&self) -> &[u8] {
&self.content
}
/*
/// Check if an [`Event`] is considered too old.
fn is_too_old(&self) -> bool {
self.timestamp < UNIX_EPOCH.elapsed().unwrap().as_secs() - ORPHAN_AGE_LIMIT
}
*/
/// Fully validate an event for the correct layout against provided
/// DAG [`sled::Tree`] reference and enforce relevant age, assuming
/// some possibility for a time drift. Optionally, provide an overlay
/// to use that instead of actual referenced DAG.
pub async fn validate(
&self,
dag: &sled::Tree,
genesis_timestamp: u64,
days_rotation: u64,
overlay: Option<&SledTreeOverlay>,
) -> Result<bool> {
// Let's not bother with empty events
if self.content.is_empty() {
return Ok(false)
}
// Check if the event timestamp is after genesis timestamp
if self.timestamp < genesis_timestamp - EVENT_TIME_DRIFT {
return Ok(false)
}
// If a rotation has been set, check if the event timestamp
// is after the next genesis timestamp
if days_rotation > 0 {
let next_genesis_timestamp = next_rotation_timestamp(INITIAL_GENESIS, days_rotation);
if self.timestamp > next_genesis_timestamp + EVENT_TIME_DRIFT {
return Ok(false)
}
}
// Validate the parents. We have to check that at least one parent
// is not NULL, that the parents exist, that no two parents are the
// same, and that the parent exists in previous layers, to prevent
// recursive references(circles).
let mut seen = HashSet::new();
let self_id = self.id();
for parent_id in self.parents.iter() {
if parent_id == &NULL_ID {
continue
}
if parent_id == &self_id {
return Ok(false)
}
if seen.contains(parent_id) {
return Ok(false)
}
let parent_bytes = if let Some(overlay) = overlay {
overlay.get(parent_id.as_bytes())?
} else {
dag.get(parent_id.as_bytes())?
};
if parent_bytes.is_none() {
return Ok(false)
}
let parent: Event = deserialize_async(&parent_bytes.unwrap()).await?;
if self.layer <= parent.layer {
return Ok(false)
}
seen.insert(parent_id);
}
Ok(!seen.is_empty())
}
/// Fully validate an event for the correct layout against provided
/// [`EventGraph`] reference and enforce relevant age, assuming some
/// possibility for a time drift.
pub async fn dag_validate(&self, event_graph: &EventGraph) -> Result<bool> {
// Grab genesis timestamp
let genesis_timestamp = event_graph.current_genesis.read().await.timestamp;
// Perform validation
self.validate(&event_graph.dag, genesis_timestamp, event_graph.days_rotation, None).await
}
/// Validate a new event for the correct layout and enforce relevant age,
/// assuming some possibility for a time drift.
/// Note: This validation does *NOT* check for recursive references(circles),
/// and should be used as a first quick check.
pub fn validate_new(&self) -> bool {
// Let's not bother with empty events
if self.content.is_empty() {
return false
}
// Check if the event is too old or too new
let now = UNIX_EPOCH.elapsed().unwrap().as_millis() as u64;
let too_old = self.timestamp < now - EVENT_TIME_DRIFT;
let too_new = self.timestamp > now + EVENT_TIME_DRIFT;
if too_old || too_new {
return false
}
// Validate the parents. We have to check that at least one parent
// is not NULL and that no two parents are the same.
let mut seen = HashSet::new();
let self_id = self.id();
for parent_id in self.parents.iter() {
if parent_id == &NULL_ID {
continue
}
if parent_id == &self_id {
return false
}
if seen.contains(parent_id) {
return false
}
seen.insert(parent_id);
}
!seen.is_empty()
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use smol::Executor;
use crate::{
event_graph::{EventGraph, EventGraphPtr},
net::{P2p, Settings},
};
use super::*;
async fn make_event_graph() -> Result<EventGraphPtr> {
let ex = Arc::new(Executor::new());
let p2p = P2p::new(Settings::default(), ex.clone()).await?;
let sled_db = sled::Config::new().temporary(true).open().unwrap();
EventGraph::new(p2p, sled_db, "/tmp".into(), false, "dag", 1, ex).await
}
#[test]
fn event_is_valid() -> Result<()> {
smol::block_on(async {
// Generate a dummy event graph
let event_graph = make_event_graph().await?;
// Create a new valid event
let valid_event = Event::new(vec![1u8], &event_graph).await;
// Validate our test Event struct
assert!(valid_event.dag_validate(&event_graph).await?);
// Thanks for reading
Ok(())
})
}
#[test]
fn invalid_events() -> Result<()> {
smol::block_on(async {
// Generate a dummy event graph
let event_graph = make_event_graph().await?;
// Create a new valid event
let valid_event = Event::new(vec![1u8], &event_graph).await;
let mut event_empty_content = valid_event.clone();
event_empty_content.content = vec![];
assert!(!event_empty_content.dag_validate(&event_graph).await?);
let mut event_timestamp_too_old = valid_event.clone();
event_timestamp_too_old.timestamp = 0;
assert!(!event_timestamp_too_old.dag_validate(&event_graph).await?);
let mut event_timestamp_too_new = valid_event.clone();
event_timestamp_too_new.timestamp = u64::MAX;
assert!(!event_timestamp_too_new.dag_validate(&event_graph).await?);
let mut event_duplicated_parents = valid_event.clone();
event_duplicated_parents.parents[1] = valid_event.parents[0];
assert!(!event_duplicated_parents.dag_validate(&event_graph).await?);
let mut event_null_parents = valid_event.clone();
let all_null_parents = [NULL_ID, NULL_ID, NULL_ID, NULL_ID, NULL_ID];
event_null_parents.parents = all_null_parents;
assert!(!event_null_parents.dag_validate(&event_graph).await?);
let mut event_same_layer_as_parents = valid_event.clone();
event_same_layer_as_parents.layer = 0;
assert!(!event_same_layer_as_parents.dag_validate(&event_graph).await?);
// Thanks for reading
Ok(())
})
}
}