darkfi/runtime/
vm_runtime.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/* This file is part of DarkFi (https://dark.fi)
 *
 * Copyright (C) 2020-2024 Dyne.org foundation
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use std::{
    cell::{Cell, RefCell},
    sync::Arc,
};

use darkfi_sdk::{crypto::ContractId, tx::TransactionHash, wasm, AsHex};
use darkfi_serial::serialize;
use log::{debug, error, info};
use wasmer::{
    imports, wasmparser::Operator, AsStoreMut, AsStoreRef, CompilerConfig, Function, FunctionEnv,
    Instance, Memory, MemoryView, Module, Pages, Store, Value, WASM_PAGE_SIZE,
};
use wasmer_compiler_singlepass::Singlepass;
use wasmer_middlewares::{
    metering::{get_remaining_points, set_remaining_points, MeteringPoints},
    Metering,
};

use super::{import, import::db::DbHandle, memory::MemoryManipulation};
use crate::{
    blockchain::{contract_store::SMART_CONTRACT_ZKAS_DB_NAME, BlockchainOverlayPtr},
    Error, Result,
};

/// Name of the wasm linear memory in our guest module
const MEMORY: &str = "memory";

/// Gas limit for a single contract call (Single WASM instance)
const GAS_LIMIT: u64 = 400_000_000;

// ANCHOR: contract-section
#[derive(Clone, Copy, PartialEq)]
pub enum ContractSection {
    /// Setup function of a contract
    Deploy,
    /// Entrypoint function of a contract
    Exec,
    /// Apply function of a contract
    Update,
    /// Metadata
    Metadata,
    /// Placeholder state before any initialization
    Null,
}
// ANCHOR_END: contract-section

impl ContractSection {
    pub const fn name(&self) -> &str {
        match self {
            Self::Deploy => "__initialize",
            Self::Exec => "__entrypoint",
            Self::Update => "__update",
            Self::Metadata => "__metadata",
            Self::Null => unreachable!(),
        }
    }
}

/// The WASM VM runtime environment instantiated for every smart contract that runs.
pub struct Env {
    /// Blockchain overlay access
    pub blockchain: BlockchainOverlayPtr,
    /// Overlay tree handles used with `db_*`
    pub db_handles: RefCell<Vec<DbHandle>>,
    /// The contract ID being executed
    pub contract_id: ContractId,
    /// The compiled wasm bincode being executed,
    pub contract_bincode: Vec<u8>,
    /// The contract section being executed
    pub contract_section: ContractSection,
    /// State update produced by a smart contract function call
    pub contract_return_data: Cell<Option<Vec<u8>>>,
    /// Logs produced by the contract
    pub logs: RefCell<Vec<String>>,
    /// Direct memory access to the VM
    pub memory: Option<Memory>,
    /// Object store for transferring memory from the host to VM
    pub objects: RefCell<Vec<Vec<u8>>>,
    /// Block height number runtime verifies against.
    /// For unconfirmed txs, this will be the current max height in the chain.
    pub verifying_block_height: u32,
    /// Currently configured block time target, in seconds
    pub block_target: u32,
    /// The hash for this transaction the runtime is being run against.
    pub tx_hash: TransactionHash,
    /// The index for this call in the transaction
    pub call_idx: u8,
    /// Parent `Instance`
    pub instance: Option<Arc<Instance>>,
}

impl Env {
    /// Provide safe access to the memory
    /// (it must be initialized before it can be used)
    ///
    ///     // ctx: FunctionEnvMut<Env>
    ///     let env = ctx.data();
    ///     let memory = env.memory_view(&ctx);
    ///
    pub fn memory_view<'a>(&'a self, store: &'a impl AsStoreRef) -> MemoryView<'a> {
        self.memory().view(store)
    }

    /// Get memory, that needs to have been set fist
    pub fn memory(&self) -> &Memory {
        self.memory.as_ref().unwrap()
    }

    /// Subtract given gas cost from remaining gas in the current runtime
    pub fn subtract_gas(&mut self, ctx: &mut impl AsStoreMut, gas: u64) {
        match get_remaining_points(ctx, self.instance.as_ref().unwrap()) {
            MeteringPoints::Remaining(rem) => {
                if gas > rem {
                    set_remaining_points(ctx, self.instance.as_ref().unwrap(), 0);
                } else {
                    set_remaining_points(ctx, self.instance.as_ref().unwrap(), rem - gas);
                }
            }
            MeteringPoints::Exhausted => {
                set_remaining_points(ctx, self.instance.as_ref().unwrap(), 0);
            }
        }
    }
}

/// Define a wasm runtime.
pub struct Runtime {
    /// A wasm instance
    pub instance: Arc<Instance>,
    /// A wasm store (global state)
    pub store: Store,
    // Wrapper for [`Env`], defined above.
    pub ctx: FunctionEnv<Env>,
}

impl Runtime {
    /// Create a new wasm runtime instance that contains the given wasm module.
    pub fn new(
        wasm_bytes: &[u8],
        blockchain: BlockchainOverlayPtr,
        contract_id: ContractId,
        verifying_block_height: u32,
        block_target: u32,
        tx_hash: TransactionHash,
        call_idx: u8,
    ) -> Result<Self> {
        info!(target: "runtime::vm_runtime", "[WASM] Instantiating a new runtime");
        // This function will be called for each `Operator` encountered during
        // the wasm module execution. It should return the cost of the operator
        // that it received as its first argument. For now, every wasm opcode
        // has a cost of `1`.
        // https://docs.rs/wasmparser/latest/wasmparser/enum.Operator.html
        let cost_function = |_operator: &Operator| -> u64 { 1 };

        // `Metering` needs to be configured with a limit and a cost function.
        // For each `Operator`, the metering middleware will call the cost
        // function and subtract the cost from the remaining points.
        let metering = Arc::new(Metering::new(GAS_LIMIT, cost_function));

        // Define the compiler and middleware, engine, and store
        let mut compiler_config = Singlepass::new();
        compiler_config.push_middleware(metering);
        let mut store = Store::new(compiler_config);

        debug!(target: "runtime::vm_runtime", "Compiling module");
        let module = Module::new(&store, wasm_bytes)?;

        // Initialize data
        let db_handles = RefCell::new(vec![]);
        let logs = RefCell::new(vec![]);

        debug!(target: "runtime::vm_runtime", "Importing functions");

        let ctx = FunctionEnv::new(
            &mut store,
            Env {
                blockchain,
                db_handles,
                contract_id,
                contract_bincode: wasm_bytes.to_vec(),
                contract_section: ContractSection::Null,
                contract_return_data: Cell::new(None),
                logs,
                memory: None,
                objects: RefCell::new(vec![]),
                verifying_block_height,
                block_target,
                tx_hash,
                call_idx,
                instance: None,
            },
        );

        let imports = imports! {
            "env" => {
                "drk_log_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::drk_log,
                ),

                "set_return_data_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::set_return_data,
                ),

                "db_init_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::db::db_init,
                ),

                "db_lookup_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::db::db_lookup,
                ),

                "db_get_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::db::db_get,
                ),

                "db_contains_key_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::db::db_contains_key,
                ),

                "db_set_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::db::db_set,
                ),

                "db_del_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::db::db_del,
                ),

                "zkas_db_set_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::db::zkas_db_set,
                ),

                "get_object_bytes_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_object_bytes,
                ),

                "get_object_size_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_object_size,
                ),

                "merkle_add_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::merkle::merkle_add,
                ),

                "sparse_merkle_insert_batch_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::smt::sparse_merkle_insert_batch,
                ),

                "get_verifying_block_height_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_verifying_block_height,
                ),

                "get_block_target_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_block_target,
                ),

                "get_tx_hash_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_tx_hash,
                ),

                "get_call_index_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_call_index,
                ),

                "get_blockchain_time_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_blockchain_time,
                ),

                "get_last_block_height_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_last_block_height,
                ),

                "get_tx_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_tx,
                ),

                "get_tx_location_" => Function::new_typed_with_env(
                    &mut store,
                    &ctx,
                    import::util::get_tx_location,
                ),
            }
        };

        debug!(target: "runtime::vm_runtime", "Instantiating module");
        let instance = Arc::new(Instance::new(&mut store, &module, &imports)?);

        let env_mut = ctx.as_mut(&mut store);
        env_mut.memory = Some(instance.exports.get_with_generics(MEMORY)?);
        env_mut.instance = Some(Arc::clone(&instance));

        Ok(Self { instance, store, ctx })
    }

    /// Call a contract method defined by a [`ContractSection`] using a supplied
    /// payload. Returns a `Vec<u8>` corresponding to the result data of the call.
    /// For calls that do not return any data, an empty `Vec<u8>` is returned.
    fn call(&mut self, section: ContractSection, payload: &[u8]) -> Result<Vec<u8>> {
        debug!(target: "runtime::vm_runtime", "Calling {} method", section.name());

        let env_mut = self.ctx.as_mut(&mut self.store);
        env_mut.contract_section = section;
        // Verify contract's return data is empty, or quit.
        assert!(env_mut.contract_return_data.take().is_none());

        // Clear the logs
        let _ = env_mut.logs.take();

        // Serialize the payload for the format the wasm runtime is expecting.
        let payload = Self::serialize_payload(&env_mut.contract_id, payload);

        // Allocate enough memory for the payload and copy it into the memory.
        let pages_required = payload.len() / WASM_PAGE_SIZE + 1;
        self.set_memory_page_size(pages_required as u32)?;
        self.copy_to_memory(&payload)?;

        debug!(target: "runtime::vm_runtime", "Getting {} function", section.name());
        let entrypoint = self.instance.exports.get_function(section.name())?;

        // Call the entrypoint. On success, `call` returns a WASM [`Value`]. (The
        // value may be empty.) This value functions similarly to a UNIX exit code.
        // The following section is intended to unwrap the exit code and handle fatal
        // errors in the Wasmer runtime. The value itself and the return data of the
        // contract are processed later.
        debug!(target: "runtime::vm_runtime", "Executing wasm");
        let ret = match entrypoint.call(&mut self.store, &[Value::I32(0_i32)]) {
            Ok(retvals) => {
                self.print_logs();
                info!(target: "runtime::vm_runtime", "[WASM] {}", self.gas_info());
                retvals
            }
            Err(e) => {
                self.print_logs();
                info!(target: "runtime::vm_runtime", "[WASM] {}", self.gas_info());
                // WasmerRuntimeError panics are handled here. Return from run() immediately.
                error!(target: "runtime::vm_runtime", "[WASM] Wasmer Runtime Error: {:#?}", e);
                return Err(e.into())
            }
        };

        debug!(target: "runtime::vm_runtime", "wasm executed successfully");

        // Move the contract's return data into `retdata`.
        let env_mut = self.ctx.as_mut(&mut self.store);
        env_mut.contract_section = ContractSection::Null;
        let retdata = env_mut.contract_return_data.take().unwrap_or_default();

        // Determine the return value of the contract call. If `ret` is empty,
        // assumed that the contract call was successful.
        let retval: i64 = match ret.len() {
            0 => {
                // Return a success value if there is no return value from
                // the contract.
                debug!(target: "runtime::vm_runtime", "Contract has no return value (expected)");
                wasm::entrypoint::SUCCESS
            }
            _ => {
                match ret[0] {
                    Value::I64(v) => {
                        debug!(target: "runtime::vm_runtime", "Contract returned: {:?}", ret[0]);
                        v
                    }
                    // The only supported return type is i64, so panic if another
                    // value is returned.
                    _ => unreachable!("Got unexpected result return value: {:?}", ret),
                }
            }
        };

        // Check the integer return value of the call. A value of `entrypoint::SUCCESS` (i.e. zero)
        // corresponds to a successful contract call; in this case, we return the contract's
        // result data. Otherwise, map the integer return value to a [`ContractError`].
        match retval {
            wasm::entrypoint::SUCCESS => Ok(retdata),
            _ => {
                let err = darkfi_sdk::error::ContractError::from(retval);
                error!(target: "runtime::vm_runtime", "[WASM] Contract returned: {:?}", err);
                Err(Error::ContractError(err))
            }
        }
    }

    /// This function runs when a smart contract is initially deployed, or re-deployed.
    ///
    /// The runtime will look for an `__initialize` symbol in the wasm code, and execute
    /// it if found. Optionally, it is possible to pass in a payload for any kind of special
    /// instructions the developer wants to manage in the initialize function.
    ///
    /// This process is supposed to set up the overlay trees for storing the smart contract
    /// state, and it can create, delete, modify, read, and write to databases it's allowed to.
    /// The permissions for this are handled by the `ContractId` in the overlay db API so we
    /// assume that the contract is only able to do write operations on its own overlay trees.
    pub fn deploy(&mut self, payload: &[u8]) -> Result<()> {
        let cid = self.ctx.as_ref(&self.store).contract_id;
        info!(target: "runtime::vm_runtime", "[WASM] Running deploy() for ContractID: {}", cid);

        // Scoped for borrows
        {
            let env_mut = self.ctx.as_mut(&mut self.store);
            // We always want to have the zkas db as index 0 in db handles and batches when
            // deploying.
            let contracts = &env_mut.blockchain.lock().unwrap().contracts;

            // Open or create the zkas db tree for this contract
            let zkas_tree_handle =
                match contracts.lookup(&env_mut.contract_id, SMART_CONTRACT_ZKAS_DB_NAME) {
                    Ok(v) => v,
                    Err(_) => contracts.init(&env_mut.contract_id, SMART_CONTRACT_ZKAS_DB_NAME)?,
                };

            let mut db_handles = env_mut.db_handles.borrow_mut();
            db_handles.push(DbHandle::new(env_mut.contract_id, zkas_tree_handle));
        }

        //debug!(target: "runtime::vm_runtime", "[WASM] payload: {:?}", payload);
        let _ = self.call(ContractSection::Deploy, payload)?;

        // Update the wasm bincode in the ContractStore wasm tree if the deploy exec passed successfully.
        let env_mut = self.ctx.as_mut(&mut self.store);
        env_mut
            .blockchain
            .lock()
            .unwrap()
            .contracts
            .insert(env_mut.contract_id, &env_mut.contract_bincode)?;

        info!(target: "runtime::vm_runtime", "[WASM] Successfully deployed ContractID: {}", cid);
        Ok(())
    }

    /// This function runs first in the entire scheme of executing a smart contract.
    ///
    /// The runtime will look for a `__metadata` symbol in the wasm code and execute it.
    /// It is supposed to correctly extract public inputs for any ZK proofs included
    /// in the contract calls, and also extract the public keys used to verify the
    /// call/transaction signatures.
    pub fn metadata(&mut self, payload: &[u8]) -> Result<Vec<u8>> {
        let cid = self.ctx.as_ref(&self.store).contract_id;
        info!(target: "runtime::vm_runtime", "[WASM] Running metadata() for ContractID: {}", cid);

        debug!(target: "runtime::vm_runtime", "metadata payload: {}", payload.hex());
        let ret = self.call(ContractSection::Metadata, payload)?;
        debug!(target: "runtime::vm_runtime", "metadata returned: {:?}", ret.hex());

        info!(target: "runtime::vm_runtime", "[WASM] Successfully got metadata ContractID: {}", cid);
        Ok(ret)
    }

    /// This function runs when someone wants to execute a smart contract.
    ///
    /// The runtime will look for an `__entrypoint` symbol in the wasm code, and
    /// execute it if found. A payload is also passed as an instruction that can
    /// be used inside the vm by the runtime.
    pub fn exec(&mut self, payload: &[u8]) -> Result<Vec<u8>> {
        let cid = self.ctx.as_ref(&self.store).contract_id;
        info!(target: "runtime::vm_runtime", "[WASM] Running exec() for ContractID: {}", cid);

        debug!(target: "runtime::vm_runtime", "exec payload: {}", payload.hex());
        let ret = self.call(ContractSection::Exec, payload)?;
        debug!(target: "runtime::vm_runtime", "exec returned: {:?}", ret.hex());

        info!(target: "runtime::vm_runtime", "[WASM] Successfully executed ContractID: {}", cid);
        Ok(ret)
    }

    /// This function runs after successful execution of `exec` and tries to
    /// apply the state change to the overlay databases.
    ///
    /// The runtime will lok for an `__update` symbol in the wasm code, and execute
    /// it if found. The function does not take an arbitrary payload, but just takes
    /// a state update from `env` and passes it into the wasm runtime.
    pub fn apply(&mut self, update: &[u8]) -> Result<()> {
        let cid = self.ctx.as_ref(&self.store).contract_id;
        info!(target: "runtime::vm_runtime", "[WASM] Running apply() for ContractID: {}", cid);

        debug!(target: "runtime::vm_runtime", "apply payload: {:?}", update.hex());
        let ret = self.call(ContractSection::Update, update)?;
        debug!(target: "runtime::vm_runtime", "apply returned: {:?}", ret.hex());

        info!(target: "runtime::vm_runtime", "[WASM] Successfully applied ContractID: {}", cid);
        Ok(())
    }

    /// Prints the wasm contract logs.
    fn print_logs(&self) {
        let logs = self.ctx.as_ref(&self.store).logs.borrow();
        for msg in logs.iter() {
            info!(target: "runtime::vm_runtime", "[WASM] Contract log: {}", msg);
        }
    }

    /// Calculate the remaining gas using wasm's concept
    /// of metering points.
    pub fn gas_used(&mut self) -> u64 {
        let remaining_points = get_remaining_points(&mut self.store, &self.instance);

        match remaining_points {
            MeteringPoints::Remaining(rem) => {
                if rem > GAS_LIMIT {
                    // This should never occur, but catch it explicitly to avoid
                    // potential underflow issues when calculating `remaining_points`.
                    unreachable!("Remaining wasm points exceed GAS_LIMIT");
                }
                GAS_LIMIT - rem
            }
            MeteringPoints::Exhausted => GAS_LIMIT + 1,
        }
    }

    // Return a message informing the user whether there is any
    // gas remaining. Values equal to GAS_LIMIT are not considered
    // to be exhausted. e.g. Using 100/100 gas should not give a
    // 'gas exhausted' message.
    fn gas_info(&mut self) -> String {
        let gas_used = self.gas_used();

        if gas_used > GAS_LIMIT {
            format!("Gas fully exhausted: {}/{}", gas_used, GAS_LIMIT)
        } else {
            format!("Gas used: {}/{}", gas_used, GAS_LIMIT)
        }
    }

    /// Set the memory page size. Returns the previous memory size.
    fn set_memory_page_size(&mut self, pages: u32) -> Result<Pages> {
        // Grab memory by value
        let memory = self.take_memory();
        // Modify the memory
        let ret = memory.grow(&mut self.store, Pages(pages))?;
        // Replace the memory back again
        self.ctx.as_mut(&mut self.store).memory = Some(memory);
        Ok(ret)
    }

    /// Take Memory by value. Needed to modify the Memory object
    /// Will panic if memory isn't set.
    fn take_memory(&mut self) -> Memory {
        let env_memory = &mut self.ctx.as_mut(&mut self.store).memory;
        let memory = env_memory.take();
        memory.expect("memory should be set")
    }

    /// Copy payload to the start of the memory
    fn copy_to_memory(&self, payload: &[u8]) -> Result<()> {
        // Payload is copied to index 0.
        // Get the memory view
        let env = self.ctx.as_ref(&self.store);
        let memory_view = env.memory_view(&self.store);
        memory_view.write_slice(payload, 0)
    }

    /// Serialize contract payload to the format accepted by the runtime functions.
    /// We keep the same payload as a slice of bytes, and prepend it with a [`ContractId`],
    /// and then a little-endian u64 to tell the payload's length.
    fn serialize_payload(cid: &ContractId, payload: &[u8]) -> Vec<u8> {
        let ser_cid = serialize(cid);
        let payload_len = payload.len();
        let mut out = Vec::with_capacity(ser_cid.len() + 8 + payload_len);
        out.extend_from_slice(&ser_cid);
        out.extend_from_slice(&(payload_len as u64).to_le_bytes());
        out.extend_from_slice(payload);
        out
    }
}