darkfi/system/condvar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/* This file is part of DarkFi (https://dark.fi)
*
* Copyright (C) 2020-2024 Dyne.org foundation
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use std::{
future::Future,
pin::Pin,
sync::Mutex,
task::{Context, Poll, Waker},
};
/// Condition variables allow you to block a task while waiting for an event to occur.
/// Condition variables are typically associated with a boolean predicate (a condition).
/// ```rust
/// let cv = Arc::new(CondVar::new());
///
/// let cv_ = cv.clone();
/// executor_
/// .spawn(async move {
/// // Waits here until notify() is called
/// cv_.wait().await;
/// // Check for some condition...
/// })
/// .detach();
///
/// // Allow above code to continue
/// cv.notify();
/// ```
/// After the condition variable is woken up, the user may `wait` again for another `notify`
/// signal by first calling `cv_.reset()`.
pub struct CondVar {
state: Mutex<CondVarState>,
}
struct CondVarState {
is_awake: bool,
waker: Option<Waker>,
}
impl CondVar {
pub fn new() -> Self {
Self { state: Mutex::new(CondVarState { is_awake: false, waker: None }) }
}
/// Wakeup the waiting task. Subsequent calls to this do nothing until `wait()` is called.
pub fn notify(&self) {
let mut state = self.state.lock().unwrap();
state.is_awake = true;
// Notify the executor that the pending future from wait() is to be polled again.
if let Some(waker) = state.waker.take() {
waker.wake()
}
}
/// Reset the condition variable and wait for a notification
pub fn wait(&self) -> CondVarWait {
CondVarWait { state: &self.state }
}
/// Reset self ready to wait() again.
/// The reason this is separate from `wait()` is that usually
/// on the first `wait()` we want to catch any `notify()` calls that
/// happened before we started. For example,
/// ```rust
/// loop {
/// // Wait for signal
/// cv.wait().await;
///
/// // Do stuff...
///
/// cv.reset();
/// }
/// ```
pub fn reset(&self) {
let mut state = self.state.lock().unwrap();
state.is_awake = false;
}
}
impl Default for CondVar {
fn default() -> Self {
Self::new()
}
}
/// Awaitable futures object returned by `condvar.wait()`
pub struct CondVarWait<'a> {
state: &'a Mutex<CondVarState>,
}
impl Future for CondVarWait<'_> {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.state.lock().unwrap();
// Avoid cloning wherever possible.
// This code below is equivalent to:
//
// state.waker = Some(cx.waker().clone());
//
// However checking whether the waker we have wakes up the same task
// as the one in the context cx, means we don't have to re-clone if
// we already have it.
//
// It's a minor thing which is basically recommended in the docs on
// creating pollable futures.
let new_waker = match state.waker.take() {
Some(waker) => {
let cx_waker = cx.waker();
if cx_waker.will_wake(&waker) {
waker
} else {
cx_waker.clone()
}
}
None => cx.waker().clone(),
};
state.waker = Some(new_waker);
match state.is_awake {
true => Poll::Ready(()),
false => Poll::Pending,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use futures::{select, FutureExt};
use smol::Executor;
use std::sync::Arc;
#[test]
fn condvar_test() {
let executor = Arc::new(Executor::new());
let executor_ = executor.clone();
smol::block_on(executor.run(async move {
let cv = Arc::new(CondVar::new());
let cv_ = cv.clone();
executor_
.spawn(async move {
// Waits here until notify() is called
cv_.wait().await;
})
.detach();
// Allow above code to continue
cv.notify();
}))
}
#[test]
fn condvar_reset() {
let executor = Arc::new(Executor::new());
let executor_ = executor.clone();
smol::block_on(executor.run(async move {
let cv = Arc::new(CondVar::new());
let cv_ = cv.clone();
executor_
.spawn(async move {
cv_.wait().await;
})
.detach();
// #1 send signal
cv.notify();
// Multiple calls to notify do nothing until we call reset()
cv.notify();
// Without calling reset(), then the wait() will return instantly
cv.reset();
let cv_ = cv.clone();
executor_
.spawn(async move {
cv_.wait().await;
})
.detach();
// #2 send signal again
cv.notify();
}))
}
#[test]
fn condvar_double_wait() {
let executor = Arc::new(Executor::new());
let executor_ = executor.clone();
smol::block_on(executor.run(async move {
let cv = Arc::new(CondVar::new());
let cv2 = cv.clone();
let cv3 = cv.clone();
executor_.spawn(async move { cv2.wait().await }).detach();
executor_.spawn(async move { cv3.wait().await }).detach();
// Allow above code to continue
cv.notify();
}))
}
#[test]
fn condvar_wait_after_notify() {
let executor = Arc::new(Executor::new());
let executor_ = executor.clone();
smol::block_on(executor.run(async move {
let cv = Arc::new(CondVar::new());
let cv2 = cv.clone();
executor_.spawn(async move { cv2.wait().await }).detach();
cv.notify();
// Should complete immediately
let cv2 = cv.clone();
executor_.spawn(async move { cv2.wait().await }).detach();
}))
}
#[test]
fn condvar_drop() {
let executor = Arc::new(Executor::new());
let executor_ = executor.clone();
smol::block_on(executor.run(async move {
let cv = Arc::new(CondVar::new());
let cv_ = cv.clone();
executor_
.spawn(async move {
select! {
() = cv_.wait().fuse() => (),
() = (async {}).fuse() => ()
}
// The above future was dropped and we make a new one
cv_.wait().await
})
.detach();
// Allow above code to continue
cv.notify();
}))
}
}