darkfi/tx/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/* This file is part of DarkFi (https://dark.fi)
*
* Copyright (C) 2020-2024 Dyne.org foundation
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use std::collections::HashMap;
use darkfi_sdk::{
crypto::{
schnorr::{SchnorrPublic, SchnorrSecret, Signature},
PublicKey, SecretKey,
},
dark_tree::{dark_forest_leaf_vec_integrity_check, DarkForest, DarkLeaf, DarkTree},
error::DarkTreeResult,
pasta::pallas,
tx::{ContractCall, TransactionHash},
AsHex,
};
#[cfg(feature = "async-serial")]
use darkfi_serial::async_trait;
use darkfi_serial::{Encodable, SerialDecodable, SerialEncodable};
use log::{debug, error};
use crate::{
error::TxVerifyFailed,
zk::{proof::VerifyingKey, Proof},
Error, Result,
};
macro_rules! zip {
($x:expr) => ($x);
($x:expr, $($y:expr), +) => (
$x.iter().zip(zip!($($y), +))
)
}
// ANCHOR: transaction
/// A Transaction contains an arbitrary number of `ContractCall` objects,
/// along with corresponding ZK proofs and Schnorr signatures.
///
/// `DarkLeaf` is used to map relations between contract calls in the transaction.
#[derive(Clone, Default, Eq, PartialEq, SerialEncodable, SerialDecodable)]
pub struct Transaction {
/// Calls executed in this transaction
pub calls: Vec<DarkLeaf<ContractCall>>,
/// Attached ZK proofs
pub proofs: Vec<Vec<Proof>>,
/// Attached Schnorr signatures
pub signatures: Vec<Vec<Signature>>,
}
// ANCHOR_END: transaction
impl Transaction {
/// Verify ZK proofs for the entire transaction.
pub async fn verify_zkps(
&self,
verifying_keys: &HashMap<[u8; 32], HashMap<String, VerifyingKey>>,
zkp_table: Vec<Vec<(String, Vec<pallas::Base>)>>,
) -> Result<()> {
// TODO: Are we sure we should assert here?
assert_eq!(self.calls.len(), self.proofs.len());
assert_eq!(self.calls.len(), zkp_table.len());
for (call, (proofs, pubvals)) in zip!(self.calls, self.proofs, zkp_table) {
assert_eq!(proofs.len(), pubvals.len());
let Some(contract_map) = verifying_keys.get(&call.data.contract_id.to_bytes()) else {
error!(
target: "tx::verify_zkps",
"[TX] Verifying keys not found for contract {}",
call.data.contract_id,
);
return Err(TxVerifyFailed::InvalidZkProof.into())
};
for (proof, (zk_ns, public_vals)) in proofs.iter().zip(pubvals.iter()) {
if let Some(vk) = contract_map.get(zk_ns) {
// We have a verifying key for this
debug!(target: "tx::verify_zkps", "[TX] public inputs: {:#?}", public_vals);
if let Err(e) = proof.verify(vk, public_vals) {
error!(
target: "tx::verify_zkps",
"[TX] Failed verifying {}::{} ZK proof: {:#?}",
call.data.contract_id, zk_ns, e
);
return Err(TxVerifyFailed::InvalidZkProof.into())
}
debug!(
target: "tx::verify_zkps",
"[TX] Successfully verified {}::{} ZK proof",
call.data.contract_id, zk_ns,
);
continue
}
error!(
target: "tx::verify_zkps",
"[TX] {}::{} circuit VK nonexistent",
call.data.contract_id, zk_ns,
);
return Err(TxVerifyFailed::InvalidZkProof.into())
}
}
Ok(())
}
/// Verify Schnorr signatures for the entire transaction.
pub fn verify_sigs(&self, pub_table: Vec<Vec<PublicKey>>) -> Result<()> {
// Hash the transaction without the signatures
let mut hasher = blake3::Hasher::new();
self.calls.encode(&mut hasher)?;
self.proofs.encode(&mut hasher)?;
let data_hash = hasher.finalize();
debug!(
target: "tx::verify_sigs",
"tx.verify_sigs: data_hash: {}", data_hash.as_bytes().hex(),
);
assert_eq!(self.signatures.len(), pub_table.len());
for (i, (sigs, pubkeys)) in self.signatures.iter().zip(pub_table.iter()).enumerate() {
assert_eq!(sigs.len(), pubkeys.len());
for (pubkey, signature) in pubkeys.iter().zip(sigs) {
debug!(
target: "tx::verify_sigs",
"[TX] Verifying signature with public key: {}", pubkey,
);
if !pubkey.verify(&data_hash.as_bytes()[..], signature) {
error!(
target: "tx::verify_sigs",
"[TX] tx::verify_sigs[{}] failed to verify signature", i,
);
return Err(Error::InvalidSignature)
}
}
debug!(target: "tx::verify_sigs", "[TX] tx::verify_sigs[{}] passed", i);
}
Ok(())
}
/// Create Schnorr signatures for the entire transaction.
pub fn create_sigs(&self, secret_keys: &[SecretKey]) -> Result<Vec<Signature>> {
// Hash the transaction without the signatures
let mut hasher = blake3::Hasher::new();
self.calls.encode(&mut hasher)?;
self.proofs.encode(&mut hasher)?;
let data_hash = hasher.finalize();
debug!(
target: "tx::create_sigs",
"[TX] tx.create_sigs: data_hash: {:?}", data_hash.as_bytes().hex(),
);
let mut sigs = vec![];
for secret in secret_keys {
debug!(
target: "tx::create_sigs",
"[TX] Creating signature with public key: {}", PublicKey::from_secret(*secret),
);
let signature = secret.sign(&data_hash.as_bytes()[..]);
sigs.push(signature);
}
Ok(sigs)
}
/// Get the transaction hash
pub fn hash(&self) -> TransactionHash {
let mut hasher = blake3::Hasher::new();
// Blake3 hasher .update() method never fails.
// This call returns a Result due to how the Write trait is specified.
// Calling unwrap() here should be safe.
self.encode(&mut hasher).expect("blake3 hasher");
TransactionHash(hasher.finalize().into())
}
/// Returns true if transaction is a PoW reward one.
pub fn is_pow_reward(&self) -> bool {
// PoW rewards must be single contract calls
if !self.is_single_call() {
return false;
}
self.calls[0].data.is_money_pow_reward()
}
/// Returns true if the transaction consists of a single call with non-empty data.
pub fn is_single_call(&self) -> bool {
self.calls.len() == 1 && !self.calls[0].data.data.is_empty()
}
}
// Avoid showing the proofs and sigs in the debug output since often they are very long.
impl std::fmt::Debug for Transaction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(f, "Transaction {{")?;
for (i, call) in self.calls.iter().enumerate() {
writeln!(f, " Call {} {{", i)?;
writeln!(f, " contract_id: {:?}", call.data.contract_id.inner())?;
let calldata = &call.data.data;
if !calldata.is_empty() {
writeln!(f, " function_code: {}", calldata[0])?;
}
writeln!(f, " parent: {:?}", call.parent_index)?;
writeln!(f, " children: {:?}", call.children_indexes)?;
writeln!(f, " }},")?;
}
writeln!(f, "}}")
}
}
#[cfg(feature = "net")]
use crate::net::Message;
#[cfg(feature = "net")]
crate::impl_p2p_message!(Transaction, "tx");
/// Calls tree bounds definitions
// TODO: increase min to 2 when fees are implement
pub const MIN_TX_CALLS: usize = 1;
// TODO: verify max value
pub const MAX_TX_CALLS: usize = 20;
/// Auxiliarry structure containing all the information
/// required to execute a contract call.
#[derive(Clone)]
pub struct ContractCallLeaf {
/// Call executed
pub call: ContractCall,
/// Attached ZK proofs
pub proofs: Vec<Proof>,
}
/// Auxiliary structure to build a full [`Transaction`] using
/// [`DarkTree`] to order everything.
pub struct TransactionBuilder {
/// Contract calls trees forest
pub calls: DarkForest<ContractCallLeaf>,
}
// TODO: for now we build the trees manually, but we should
// add all the proper functions for easier building.
impl TransactionBuilder {
/// Initialize the builder, using provided data to
/// generate its initial [`DarkTree`] root.
pub fn new(
data: ContractCallLeaf,
children: Vec<DarkTree<ContractCallLeaf>>,
) -> DarkTreeResult<Self> {
let calls = DarkForest::new(Some(MIN_TX_CALLS), Some(MAX_TX_CALLS));
let mut self_ = Self { calls };
self_.append(data, children)?;
Ok(self_)
}
/// Append a new call tree to the forest
pub fn append(
&mut self,
data: ContractCallLeaf,
children: Vec<DarkTree<ContractCallLeaf>>,
) -> DarkTreeResult<()> {
let tree = DarkTree::new(data, children, None, None);
self.calls.append(tree)
}
/// Builder builds the calls vector using the [`DarkForest`]
/// and generates the corresponding [`Transaction`].
pub fn build(&mut self) -> DarkTreeResult<Transaction> {
// Build the leafs vector
let leafs = self.calls.build_vec()?;
// Double check integrity
dark_forest_leaf_vec_integrity_check(&leafs, Some(MIN_TX_CALLS), Some(MAX_TX_CALLS))?;
// Build the corresponding transaction
let mut calls = Vec::with_capacity(leafs.len());
let mut proofs = Vec::with_capacity(leafs.len());
for leaf in leafs {
let call = DarkLeaf {
data: leaf.data.call,
parent_index: leaf.parent_index,
children_indexes: leaf.children_indexes,
};
calls.push(call);
proofs.push(leaf.data.proofs);
}
Ok(Transaction { calls, proofs, signatures: vec![] })
}
}