1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/* This file is part of DarkFi (https://dark.fi)
 *
 * Copyright (C) 2020-2024 Dyne.org foundation
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use std::collections::HashMap;

use darkfi_sdk::{
    crypto::{
        schnorr::{SchnorrPublic, SchnorrSecret, Signature},
        PublicKey, SecretKey,
    },
    dark_tree::{dark_forest_leaf_vec_integrity_check, DarkForest, DarkLeaf, DarkTree},
    error::DarkTreeResult,
    pasta::pallas,
    tx::{ContractCall, TransactionHash},
    AsHex,
};

#[cfg(feature = "async-serial")]
use darkfi_serial::async_trait;

use darkfi_serial::{Encodable, SerialDecodable, SerialEncodable};
use log::{debug, error};

use crate::{
    error::TxVerifyFailed,
    zk::{proof::VerifyingKey, Proof},
    Error, Result,
};

macro_rules! zip {
    ($x:expr) => ($x);
    ($x:expr, $($y:expr), +) => (
        $x.iter().zip(zip!($($y), +))
    )
}

// ANCHOR: transaction
/// A Transaction contains an arbitrary number of `ContractCall` objects,
/// along with corresponding ZK proofs and Schnorr signatures. `DarkLeaf`
/// is used to map relations between contract calls in the transaction.
#[derive(Clone, Default, Eq, PartialEq, SerialEncodable, SerialDecodable)]
pub struct Transaction {
    /// Calls executed in this transaction
    pub calls: Vec<DarkLeaf<ContractCall>>,
    /// Attached ZK proofs
    pub proofs: Vec<Vec<Proof>>,
    /// Attached Schnorr signatures
    pub signatures: Vec<Vec<Signature>>,
}
// ANCHOR_END: transaction

impl Transaction {
    /// Verify ZK proofs for the entire transaction.
    pub async fn verify_zkps(
        &self,
        verifying_keys: &HashMap<[u8; 32], HashMap<String, VerifyingKey>>,
        zkp_table: Vec<Vec<(String, Vec<pallas::Base>)>>,
    ) -> Result<()> {
        // TODO: Are we sure we should assert here?
        assert_eq!(self.calls.len(), self.proofs.len());
        assert_eq!(self.calls.len(), zkp_table.len());

        for (call, (proofs, pubvals)) in zip!(self.calls, self.proofs, zkp_table) {
            assert_eq!(proofs.len(), pubvals.len());

            let Some(contract_map) = verifying_keys.get(&call.data.contract_id.to_bytes()) else {
                error!(
                    target: "tx::verify_zkps",
                    "[TX] Verifying keys not found for contract {}",
                    call.data.contract_id,
                );
                return Err(TxVerifyFailed::InvalidZkProof.into())
            };

            for (proof, (zk_ns, public_vals)) in proofs.iter().zip(pubvals.iter()) {
                if let Some(vk) = contract_map.get(zk_ns) {
                    // We have a verifying key for this
                    debug!(target: "tx::verify_zkps", "[TX] public inputs: {:#?}", public_vals);
                    if let Err(e) = proof.verify(vk, public_vals) {
                        error!(
                            target: "tx::verify_zkps",
                            "[TX] Failed verifying {}::{} ZK proof: {:#?}",
                            call.data.contract_id, zk_ns, e
                        );
                        return Err(TxVerifyFailed::InvalidZkProof.into())
                    }
                    debug!(
                        target: "tx::verify_zkps",
                        "[TX] Successfully verified {}::{} ZK proof",
                        call.data.contract_id, zk_ns,
                    );
                    continue
                }

                error!(
                    target: "tx::verify_zkps",
                    "[TX] {}::{} circuit VK nonexistent",
                    call.data.contract_id, zk_ns,
                );
                return Err(TxVerifyFailed::InvalidZkProof.into())
            }
        }

        Ok(())
    }

    /// Verify Schnorr signatures for the entire transaction.
    pub fn verify_sigs(&self, pub_table: Vec<Vec<PublicKey>>) -> Result<()> {
        // Hash the transaction without the signatures
        let mut hasher = blake3::Hasher::new();
        self.calls.encode(&mut hasher)?;
        self.proofs.encode(&mut hasher)?;
        let data_hash = hasher.finalize();

        debug!(
            target: "tx::verify_sigs",
            "tx.verify_sigs: data_hash: {}", data_hash.as_bytes().hex(),
        );

        assert_eq!(self.signatures.len(), pub_table.len());

        for (i, (sigs, pubkeys)) in self.signatures.iter().zip(pub_table.iter()).enumerate() {
            assert_eq!(sigs.len(), pubkeys.len());

            for (pubkey, signature) in pubkeys.iter().zip(sigs) {
                debug!(
                    target: "tx::verify_sigs",
                    "[TX] Verifying signature with public key: {}", pubkey,
                );
                if !pubkey.verify(&data_hash.as_bytes()[..], signature) {
                    error!(
                        target: "tx::verify_sigs",
                        "[TX] tx::verify_sigs[{}] failed to verify signature", i,
                    );
                    return Err(Error::InvalidSignature)
                }
            }

            debug!(target: "tx::verify_sigs", "[TX] tx::verify_sigs[{}] passed", i);
        }

        Ok(())
    }

    /// Create Schnorr signatures for the entire transaction.
    pub fn create_sigs(&self, secret_keys: &[SecretKey]) -> Result<Vec<Signature>> {
        // Hash the transaction without the signatures
        let mut hasher = blake3::Hasher::new();
        self.calls.encode(&mut hasher)?;
        self.proofs.encode(&mut hasher)?;
        let data_hash = hasher.finalize();

        debug!(
            target: "tx::create_sigs",
            "[TX] tx.create_sigs: data_hash: {:?}", data_hash.as_bytes().hex(),
        );

        let mut sigs = vec![];
        for secret in secret_keys {
            debug!(
                target: "tx::create_sigs",
                "[TX] Creating signature with public key: {}", PublicKey::from_secret(*secret),
            );
            let signature = secret.sign(&data_hash.as_bytes()[..]);
            sigs.push(signature);
        }

        Ok(sigs)
    }

    /// Get the transaction hash
    pub fn hash(&self) -> TransactionHash {
        let mut hasher = blake3::Hasher::new();
        // Blake3 hasher .update() method never fails.
        // This call returns a Result due to how the Write trait is specified.
        // Calling unwrap() here should be safe.
        self.encode(&mut hasher).expect("blake3 hasher");
        TransactionHash(hasher.finalize().into())
    }
}

// Avoid showing the proofs and sigs in the debug output since often they are very long.
impl std::fmt::Debug for Transaction {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        writeln!(f, "Transaction {{")?;
        for (i, call) in self.calls.iter().enumerate() {
            writeln!(f, "  Call {} {{", i)?;
            writeln!(f, "    contract_id: {:?}", call.data.contract_id.inner())?;
            let calldata = &call.data.data;
            if !calldata.is_empty() {
                writeln!(f, "    function_code: {}", calldata[0])?;
            }
            writeln!(f, "    parent: {:?}", call.parent_index)?;
            writeln!(f, "    children: {:?}", call.children_indexes)?;
            writeln!(f, "  }},")?;
        }
        writeln!(f, "}}")
    }
}

#[cfg(feature = "net")]
use crate::net::Message;

#[cfg(feature = "net")]
crate::impl_p2p_message!(Transaction, "tx");

/// Calls tree bounds definitions
// TODO: increase min to 2 when fees are implement
pub const MIN_TX_CALLS: usize = 1;
// TODO: verify max value
pub const MAX_TX_CALLS: usize = 20;

/// Auxiliarry structure containing all the information
/// required to execute a contract call.
#[derive(Clone)]
pub struct ContractCallLeaf {
    /// Call executed
    pub call: ContractCall,
    /// Attached ZK proofs
    pub proofs: Vec<Proof>,
}

/// Auxiliary structure to build a full [`Transaction`] using
/// [`DarkTree`] to order everything.
pub struct TransactionBuilder {
    /// Contract calls trees forest
    pub calls: DarkForest<ContractCallLeaf>,
}

// TODO: for now we build the trees manually, but we should
//       add all the proper functions for easier building.
impl TransactionBuilder {
    /// Initialize the builder, using provided data to
    /// generate its initial [`DarkTree`] root.
    pub fn new(
        data: ContractCallLeaf,
        children: Vec<DarkTree<ContractCallLeaf>>,
    ) -> DarkTreeResult<Self> {
        let calls = DarkForest::new(Some(MIN_TX_CALLS), Some(MAX_TX_CALLS));
        let mut self_ = Self { calls };
        self_.append(data, children)?;
        Ok(self_)
    }

    /// Append a new call tree to the forest
    pub fn append(
        &mut self,
        data: ContractCallLeaf,
        children: Vec<DarkTree<ContractCallLeaf>>,
    ) -> DarkTreeResult<()> {
        let tree = DarkTree::new(data, children, None, None);
        self.calls.append(tree)
    }

    /// Builder builds the calls vector using the [`DarkForest`]
    /// and generates the corresponding [`Transaction`].
    pub fn build(&mut self) -> DarkTreeResult<Transaction> {
        // Build the leafs vector
        let leafs = self.calls.build_vec()?;

        // Double check integrity
        dark_forest_leaf_vec_integrity_check(&leafs, Some(MIN_TX_CALLS), Some(MAX_TX_CALLS))?;

        // Build the corresponding transaction
        let mut calls = Vec::with_capacity(leafs.len());
        let mut proofs = Vec::with_capacity(leafs.len());
        for leaf in leafs {
            let call = DarkLeaf {
                data: leaf.data.call,
                parent_index: leaf.parent_index,
                children_indexes: leaf.children_indexes,
            };
            calls.push(call);
            proofs.push(leaf.data.proofs);
        }

        Ok(Transaction { calls, proofs, signatures: vec![] })
    }
}