darkfi/validator/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* This file is part of DarkFi (https://dark.fi)
 *
 * Copyright (C) 2020-2024 Dyne.org foundation
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use darkfi_sdk::{
    crypto::{DAO_CONTRACT_ID, DEPLOYOOOR_CONTRACT_ID, MONEY_CONTRACT_ID},
    tx::TransactionHash,
};
use log::info;
use num_bigint::BigUint;
use randomx::{RandomXCache, RandomXFlags, RandomXVM};

use crate::{
    blockchain::{BlockInfo, BlockchainOverlayPtr, Header},
    runtime::vm_runtime::Runtime,
    validator::consensus::{Fork, Proposal},
    Error, Result,
};

/// Deploy DarkFi native wasm contracts to provided blockchain overlay.
///
/// If overlay already contains the contracts, it will just open the
/// necessary db and trees, and give back what it has. This means that
/// on subsequent runs, our native contracts will already be in a deployed
/// state, so what we actually do here is a redeployment. This kind of
/// operation should only modify the contract's state in case it wasn't
/// deployed before (meaning the initial run). Otherwise, it shouldn't
/// touch anything, or just potentially update the db schemas or whatever
/// is necessary. This logic should be handled in the init function of
/// the actual contract, so make sure the native contracts handle this well.
pub async fn deploy_native_contracts(
    overlay: &BlockchainOverlayPtr,
    block_target: u32,
) -> Result<()> {
    info!(target: "validator::utils::deploy_native_contracts", "Deploying native WASM contracts");

    // The Money contract uses an empty payload to deploy itself.
    let money_contract_deploy_payload = vec![];

    // The DAO contract uses an empty payload to deploy itself.
    let dao_contract_deploy_payload = vec![];

    // The Deployooor contract uses an empty payload to deploy itself.
    let deployooor_contract_deploy_payload = vec![];

    let native_contracts = vec![
        (
            "Money Contract",
            *MONEY_CONTRACT_ID,
            include_bytes!("../contract/money/darkfi_money_contract.wasm").to_vec(),
            money_contract_deploy_payload,
        ),
        (
            "DAO Contract",
            *DAO_CONTRACT_ID,
            include_bytes!("../contract/dao/darkfi_dao_contract.wasm").to_vec(),
            dao_contract_deploy_payload,
        ),
        (
            "Deployooor Contract",
            *DEPLOYOOOR_CONTRACT_ID,
            include_bytes!("../contract/deployooor/darkfi_deployooor_contract.wasm").to_vec(),
            deployooor_contract_deploy_payload,
        ),
    ];

    // Grab last known block height to verify against next one.
    // If no blocks exist, we verify against genesis block height (0).
    let verifying_block_height = match overlay.lock().unwrap().last() {
        Ok((last_block_height, _)) => last_block_height + 1,
        Err(_) => 0,
    };

    for (call_idx, nc) in native_contracts.into_iter().enumerate() {
        info!(target: "validator::utils::deploy_native_contracts", "Deploying {} with ContractID {}", nc.0, nc.1);

        let mut runtime = Runtime::new(
            &nc.2[..],
            overlay.clone(),
            nc.1,
            verifying_block_height,
            block_target,
            TransactionHash::none(),
            call_idx as u8,
        )?;

        runtime.deploy(&nc.3)?;

        info!(target: "validator::utils::deploy_native_contracts", "Successfully deployed {}", nc.0);
    }

    info!(target: "validator::utils::deploy_native_contracts", "Finished deployment of native WASM contracts");

    Ok(())
}

/// Verify provided header is valid for provided mining target and compute its rank.
///
/// Header's rank is the tuple of its squared mining target distance from max 32 bytes int,
/// along with its squared RandomX hash number distance from max 32 bytes int.
/// Genesis block has rank (0, 0).
pub fn header_rank(header: &Header, target: &BigUint) -> Result<(BigUint, BigUint)> {
    // Genesis header has rank 0
    if header.height == 0 {
        return Ok((0u64.into(), 0u64.into()))
    }

    // Setup RandomX verifier
    let flags = RandomXFlags::default();
    let cache = RandomXCache::new(flags, header.previous.inner()).unwrap();
    let vm = RandomXVM::new(flags, &cache).unwrap();

    // Compute the output hash
    let out_hash = vm.hash(header.hash().inner());
    let out_hash = BigUint::from_bytes_be(&out_hash);

    // Verify hash is less than the expected mine target
    if out_hash > *target {
        return Err(Error::PoWInvalidOutHash)
    }

    // Grab the max 32 bytes int
    let max = BigUint::from_bytes_be(&[0xFF; 32]);

    // Compute the squared mining target distance
    let target_distance = &max - target;
    let target_distance_sq = &target_distance * &target_distance;

    // Compute the output hash distance
    let hash_distance = max - out_hash;
    let hash_distance_sq = &hash_distance * &hash_distance;

    Ok((target_distance_sq, hash_distance_sq))
}

/// Compute a block's rank, assuming that its valid, based on provided mining target.
///
/// Block's rank is the tuple of its squared mining target distance from max 32 bytes int,
/// along with its squared RandomX hash number distance from max 32 bytes int.
/// Genesis block has rank (0, 0).
pub fn block_rank(block: &BlockInfo, target: &BigUint) -> (BigUint, BigUint) {
    // Genesis block has rank 0
    if block.header.height == 0 {
        return (0u64.into(), 0u64.into())
    }

    // Grab the max 32 bytes int
    let max = BigUint::from_bytes_be(&[0xFF; 32]);

    // Compute the squared mining target distance
    let target_distance = &max - target;
    let target_distance_sq = &target_distance * &target_distance;

    // Setup RandomX verifier
    let flags = RandomXFlags::default();
    let cache = RandomXCache::new(flags, block.header.previous.inner()).unwrap();
    let vm = RandomXVM::new(flags, &cache).unwrap();

    // Compute the output hash distance
    let out_hash = vm.hash(block.hash().inner());
    let out_hash = BigUint::from_bytes_be(&out_hash);
    let hash_distance = max - out_hash;
    let hash_distance_sq = &hash_distance * &hash_distance;

    (target_distance_sq, hash_distance_sq)
}

/// Auxiliary function to calculate the middle value between provided u64 numbers
pub fn get_mid(a: u64, b: u64) -> u64 {
    (a / 2) + (b / 2) + ((a - 2 * (a / 2)) + (b - 2 * (b / 2))) / 2
}

/// Auxiliary function to calculate the median of a given `Vec<u64>`.
/// The function sorts the vector internally.
pub fn median(mut v: Vec<u64>) -> u64 {
    if v.len() == 1 {
        return v[0]
    }

    let n = v.len() / 2;
    v.sort_unstable();

    if v.len() % 2 == 0 {
        v[n]
    } else {
        get_mid(v[n - 1], v[n])
    }
}

/// Given a proposal, find the index of a fork chain it extends, along with the specific
/// extended proposal index. Additionally, check that proposal doesn't already exists in any
/// fork chain.
pub fn find_extended_fork_index(forks: &[Fork], proposal: &Proposal) -> Result<(usize, usize)> {
    // Grab provided proposal hash
    let proposal_hash = proposal.hash;

    // Keep track of fork and proposal indexes
    let (mut fork_index, mut proposal_index) = (None, None);

    // Loop through all the forks
    for (f_index, fork) in forks.iter().enumerate() {
        // Traverse fork proposals sequence in reverse
        for (p_index, p_hash) in fork.proposals.iter().enumerate().rev() {
            // Check we haven't already seen that proposal
            if &proposal_hash == p_hash {
                return Err(Error::ProposalAlreadyExists)
            }

            // Check if proposal extends this fork
            if &proposal.block.header.previous == p_hash {
                (fork_index, proposal_index) = (Some(f_index), Some(p_index));
            }
        }
    }

    if let (Some(f_index), Some(p_index)) = (fork_index, proposal_index) {
        return Ok((f_index, p_index))
    }

    Err(Error::ExtendedChainIndexNotFound)
}

/// Auxiliary function to find best ranked fork.
///
/// The best ranked fork is the one with the highest sum of
/// its blocks squared mining target distances, from max 32
/// bytes int. In case of a tie, the fork with the highest
/// sum of its blocks squared RandomX hash number distances,
/// from max 32 bytes int, wins.
pub fn best_fork_index(forks: &[Fork]) -> Result<usize> {
    // Check if node has any forks
    if forks.is_empty() {
        return Err(Error::ForksNotFound)
    }

    // Find the best ranked forks
    let mut best = &BigUint::from(0u64);
    let mut indexes = vec![];
    for (f_index, fork) in forks.iter().enumerate() {
        let rank = &fork.targets_rank;

        // Fork ranks lower that current best
        if rank < best {
            continue
        }

        // Fork has same rank as current best
        if rank == best {
            indexes.push(f_index);
            continue
        }

        // Fork ranks higher that current best
        best = rank;
        indexes = vec![f_index];
    }

    // If a single best ranking fork exists, return it
    if indexes.len() == 1 {
        return Ok(indexes[0])
    }

    // Break tie using their hash distances rank
    let mut best_index = indexes[0];
    for index in &indexes[1..] {
        if forks[*index].hashes_rank > forks[best_index].hashes_rank {
            best_index = *index;
        }
    }

    Ok(best_index)
}