darkfi_sdk/crypto/smt/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/* This file is part of DarkFi (https://dark.fi)
*
* Copyright (C) 2020-2024 Dyne.org foundation
*
* Copyright (C) 2021 Webb Technologies Inc.
* Copyright (c) zkMove Authors
* SPDX-License-Identifier: Apache-2.0
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
//! This file provides a native implementation of the Sparse Merkle tree data
//! structure.
//!
//! A Sparse Merkle tree is a type of Merkle tree, but it is much easier to
//! prove non-membership in a sparse Merkle tree than in an arbitrary Merkle
//! tree. For an explanation of sparse Merkle trees, see:
//! `<https://medium.com/@kelvinfichter/whats-a-sparse-merkle-tree-acda70aeb837>`
//!
//! In this file we define the `Path` and `SparseMerkleTree` structs.
//! These depend on your choice of a prime field F, a field hasher over F
//! (any hash function that maps F^2 to F will do, e.g. the poseidon hash
//! function of width 3 where an input of zero is used for padding), and the
//! height N of the sparse Merkle tree.
//!
//! The path corresponding to a given leaf node is stored as an N-tuple of pairs
//! of field elements. Each pair consists of a node lying on the path from the
//! leaf node to the root, and that node's sibling. For example, suppose
//! ```text
//! a
//! / \
//! b c
//! / \ / \
//! d e f g
//! ```
//! is our Sparse Merkle tree, and `a` through `g` are field elements stored at
//! the nodes. Then the merkle proof path `e-b-a` from leaf `e` to root `a` is
//! stored as `[(d,e), (b,c)]`
//!
//! # Terminology
//!
//! * **level** - the depth in the tree. Type: `u32`
//! * **location** - a `(level, position)` tuple
//! * **position** - the leaf index, or equivalently the binary direction through the tree
//! with type `F`.
//! * **index** - the internal index used in the DB which is `BigUint`. Leaf node indexes are
//! calculated as `leaf_idx = final_level_start_idx + position`.
//! * **node** - either the leaf values or parent nodes `hash(left, right)`.
use num_bigint::BigUint;
use std::collections::HashMap;
// Only used for the type aliases below
use pasta_curves::pallas;
use crate::error::ContractResult;
use util::{FieldElement, FieldHasher};
mod empty;
pub use empty::EMPTY_NODES_FP;
#[cfg(test)]
mod test;
pub mod util;
pub use util::Poseidon;
pub mod wasmdb;
// Bit size for Fp (and Fq)
pub const SMT_FP_DEPTH: usize = 255;
pub type PoseidonFp = Poseidon<pallas::Base, 2>;
pub type MemoryStorageFp = MemoryStorage<pallas::Base>;
pub type SmtMemoryFp = SparseMerkleTree<
'static,
SMT_FP_DEPTH,
{ SMT_FP_DEPTH + 1 },
pallas::Base,
PoseidonFp,
MemoryStorageFp,
>;
pub type PathFp = Path<SMT_FP_DEPTH, pallas::Base, PoseidonFp>;
/// Pluggable storage backend for the SMT.
/// Has a minimal interface to put, get, and delete objects from the store.
pub trait StorageAdapter {
type Value;
fn put(&mut self, key: BigUint, value: Self::Value) -> ContractResult;
fn get(&self, key: &BigUint) -> Option<Self::Value>;
fn del(&mut self, key: &BigUint) -> ContractResult;
}
/// An in-memory storage, useful for unit tests and smaller trees.
#[derive(Default, Clone)]
pub struct MemoryStorage<F: FieldElement> {
pub tree: HashMap<BigUint, F>,
}
impl<F: FieldElement> MemoryStorage<F> {
pub fn new() -> Self {
Self { tree: HashMap::new() }
}
}
impl<F: FieldElement> StorageAdapter for MemoryStorage<F> {
type Value = F;
fn put(&mut self, key: BigUint, value: F) -> ContractResult {
self.tree.insert(key, value);
Ok(())
}
fn get(&self, key: &BigUint) -> Option<F> {
self.tree.get(key).copied()
}
fn del(&mut self, key: &BigUint) -> ContractResult {
self.tree.remove(key);
Ok(())
}
}
/// The Sparse Merkle Tree struct.
///
/// SMT stores a set of leaves represented in a map and a set of empty
/// hashes that it uses to represent the sparse areas of the tree.
///
/// The trait param `N` is the depth of the tree. A tree with a depth of `N`
/// will have `N + 1` levels.
#[derive(Debug, Clone)]
pub struct SparseMerkleTree<
'a,
const N: usize,
// M = N + 1
const M: usize,
F: FieldElement,
H: FieldHasher<F, 2>,
S: StorageAdapter<Value = F>,
> {
/// A map from leaf indices to leaf data stored as field elements.
store: S,
/// The hasher used to build the Merkle tree.
hasher: H,
/// An array of empty hashes hashed with themselves `N` times.
empty_nodes: &'a [F; M],
}
impl<
'a,
const N: usize,
const M: usize,
F: FieldElement,
H: FieldHasher<F, 2>,
S: StorageAdapter<Value = F>,
> SparseMerkleTree<'a, N, M, F, H, S>
{
/// Creates a new SMT
pub fn new(store: S, hasher: H, empty_nodes: &'a [F; M]) -> Self {
assert_eq!(M, N + 1);
Self { store, hasher, empty_nodes }
}
/// Takes a batch of field elements, inserts these hashes into the tree,
/// and updates the Merkle root.
pub fn insert_batch(&mut self, leaves: Vec<(F, F)>) -> ContractResult {
if leaves.is_empty() {
return Ok(())
}
// Nodes that need recalculating
let mut dirty_idxs = Vec::new();
for (pos, leaf) in leaves {
let idx = util::leaf_pos_to_index::<N, _>(&pos);
self.put_node(idx.clone(), leaf)?;
// Mark node parent as dirty
let parent_idx = util::parent(&idx).unwrap();
dirty_idxs.push(parent_idx);
}
self.recompute_tree(&mut dirty_idxs)?;
Ok(())
}
pub fn remove_leaves(&mut self, leaves: Vec<(F, F)>) -> ContractResult {
if leaves.is_empty() {
return Ok(())
}
let mut dirty_idxs = Vec::new();
for (pos, _leaf) in leaves {
let idx = util::leaf_pos_to_index::<N, _>(&pos);
self.remove_node(&idx)?;
// Mark node parent as dirty
let parent_idx = util::parent(&idx).unwrap();
dirty_idxs.push(parent_idx);
}
self.recompute_tree(&mut dirty_idxs)?;
Ok(())
}
/// Returns the Merkle tree root.
pub fn root(&self) -> F {
self.get_node(&BigUint::from(0u32))
}
/// Recomputes the Merkle tree depth first from the bottom of the tree
fn recompute_tree(&mut self, dirty_idxs: &mut Vec<BigUint>) -> ContractResult {
for _ in 0..N + 1 {
let mut new_dirty_idxs = vec![];
for idx in &mut *dirty_idxs {
let left_idx = util::left_child(idx);
let right_idx = util::right_child(idx);
let left = self.get_node(&left_idx);
let right = self.get_node(&right_idx);
// Recalclate the node
let node = self.hasher.hash([left, right]);
self.put_node(idx.clone(), node)?;
// Add this node's parent to the update list
let parent_idx = match util::parent(idx) {
Some(idx) => idx,
// We are at the root node so no parents exist
None => break,
};
new_dirty_idxs.push(parent_idx);
}
*dirty_idxs = new_dirty_idxs;
}
Ok(())
}
/// Give the path leading from the leaf at `index` up to the root. This is
/// a "proof" in the sense of "valid path in a Merkle tree", not a ZK argument.
pub fn prove_membership(&self, pos: &F) -> Path<N, F, H> {
let mut path = [F::ZERO; N];
let leaf_idx = util::leaf_pos_to_index::<N, _>(pos);
let mut current_idx = leaf_idx;
// Depth first from the bottom of the tree
for lvl in (0..N).rev() {
let sibling_idx = util::sibling(¤t_idx).unwrap();
let sibling_node = self.get_node(&sibling_idx);
path[lvl] = sibling_node;
// Now move to the parent
current_idx = util::parent(¤t_idx).unwrap();
}
Path { path, hasher: self.hasher.clone() }
}
/// Fast lookup for leaf. The SMT can be used as a generic container for
/// objects with very little overhead using this method.
pub fn get_leaf(&self, pos: &F) -> F {
let leaf_idx = util::leaf_pos_to_index::<N, _>(pos);
self.get_node(&leaf_idx)
}
fn get_node(&self, idx: &BigUint) -> F {
let lvl = util::log2(idx);
let empty_node = self.empty_nodes[lvl as usize];
self.store.get(idx).unwrap_or(empty_node)
}
fn put_node(&mut self, key: BigUint, value: F) -> ContractResult {
self.store.put(key, value)
}
fn remove_node(&mut self, key: &BigUint) -> ContractResult {
self.store.del(key)
}
}
/// The path contains a sequence of sibling nodes that make up a Merkle proof.
/// Each sibling node is used to identify whether the merkle root construction
/// is valid at the root.
pub struct Path<const N: usize, F: FieldElement, H: FieldHasher<F, 2>> {
/// Path from leaf to root. It is a list of sibling nodes.
/// It does not contain the root node.
/// Similar to other conventions here, the list starts higher in the tree
/// and goes down. So when iterating we start from the end.
pub path: [F; N],
hasher: H,
}
impl<const N: usize, F: FieldElement, H: FieldHasher<F, 2>> Path<N, F, H> {
pub fn verify(&self, root: &F, leaf: &F, pos: &F) -> bool {
let pos = pos.as_biguint();
assert!(pos.bits() as usize <= N);
let mut current_node = *leaf;
for i in (0..N).rev() {
let sibling_node = self.path[i];
let is_right = pos.bit((N - 1 - i) as u64);
let (left, right) =
if is_right { (sibling_node, current_node) } else { (current_node, sibling_node) };
//println!("is_right: {}", is_right);
//println!("left: {:?}, right: {:?}", left, right);
//println!("current_node: {:?}", current_node);
current_node = self.hasher.hash([left, right]);
}
current_node == *root
}
}
/// A function to generate empty hashes with a given `default_leaf`.
///
/// Given a `FieldHasher`, generate a list of `N` hashes consisting of the
/// `default_leaf` hashed with itself and repeated `N` times with the
/// intermediate results. These are used to initialize the sparse portion
/// of the SMT.
///
/// Ordering is depth-wise starting from root going down.
pub fn gen_empty_nodes<const M: usize, F: FieldElement, H: FieldHasher<F, 2>>(
hasher: &H,
empty_leaf: F,
) -> [F; M] {
let mut empty_nodes = [F::ZERO; M];
let mut empty_node = empty_leaf;
for item in empty_nodes.iter_mut().rev() {
*item = empty_node;
empty_node = hasher.hash([empty_node, empty_node]);
}
empty_nodes
}