darkfi_sdk/crypto/
merkle_node.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/* This file is part of DarkFi (https://dark.fi)
 *
 * Copyright (C) 2020-2024 Dyne.org foundation
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use core::{fmt, str::FromStr};
use std::{io, iter};

use bridgetree::{BridgeTree, Hashable, Level};
use darkfi_serial::{SerialDecodable, SerialEncodable};
use halo2_gadgets::sinsemilla::primitives::HashDomain;
use lazy_static::lazy_static;
use pasta_curves::{
    group::ff::{PrimeField, PrimeFieldBits},
    pallas,
};
use subtle::{Choice, ConditionallySelectable};

#[cfg(feature = "async")]
use darkfi_serial::async_trait;

use crate::crypto::{
    constants::{
        sinsemilla::{i2lebsp_k, L_ORCHARD_MERKLE, MERKLE_CRH_PERSONALIZATION},
        MERKLE_DEPTH,
    },
    util::FieldElemAsStr,
};

pub type MerkleTree = BridgeTree<MerkleNode, usize, { MERKLE_DEPTH }>;

lazy_static! {
    static ref UNCOMMITTED_ORCHARD: pallas::Base = pallas::Base::from(2);
    static ref EMPTY_ROOTS: Vec<MerkleNode> = {
        iter::empty()
            .chain(Some(MerkleNode::empty_leaf()))
            .chain((0..MERKLE_DEPTH).scan(MerkleNode::empty_leaf(), |state, l| {
                *state = MerkleNode::combine(l.into(), state, state);
                Some(*state)
            }))
            .collect()
    };
}

/// The `MerkleNode` is represented as a base field element.
#[repr(C)]
#[derive(Debug, Clone, Copy, Ord, PartialOrd, Eq, PartialEq, SerialEncodable, SerialDecodable)]
pub struct MerkleNode(pallas::Base);

impl MerkleNode {
    pub fn new(v: pallas::Base) -> Self {
        Self(v)
    }

    /// Reference the raw inner base field element
    pub fn inner(&self) -> pallas::Base {
        self.0
    }

    /// Try to create a `MerkleNode` type from the given 32 bytes.
    /// Returns `Some` if the bytes fit in the base field, and `None` if not.
    pub fn from_bytes(bytes: [u8; 32]) -> Option<Self> {
        let n = pallas::Base::from_repr(bytes);
        match bool::from(n.is_some()) {
            true => Some(Self(n.unwrap())),
            false => None,
        }
    }

    /// Convert the `MerkleNode` type into 32 raw bytes
    pub fn to_bytes(&self) -> [u8; 32] {
        self.0.to_repr()
    }
}

impl From<pallas::Base> for MerkleNode {
    fn from(x: pallas::Base) -> Self {
        Self(x)
    }
}

impl fmt::Display for MerkleNode {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.0.to_string())
    }
}

impl FromStr for MerkleNode {
    type Err = io::Error;

    /// Tries to decode a base58 string into a `MerkleNode` type.
    /// This string is the same string received by calling `MerkleNode::to_string()`.
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let bytes = match bs58::decode(s).into_vec() {
            Ok(v) => v,
            Err(e) => return Err(io::Error::new(io::ErrorKind::Other, e)),
        };

        if bytes.len() != 32 {
            return Err(io::Error::new(io::ErrorKind::Other, "Length of decoded bytes is not 32"))
        }

        if let Some(merkle_node) = Self::from_bytes(bytes.try_into().unwrap()) {
            return Ok(merkle_node)
        }

        Err(io::Error::new(io::ErrorKind::Other, "Invalid bytes for MerkleNode"))
    }
}

impl ConditionallySelectable for MerkleNode {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        Self(pallas::Base::conditional_select(&a.0, &b.0, choice))
    }
}

impl Hashable for MerkleNode {
    fn empty_leaf() -> Self {
        Self(*UNCOMMITTED_ORCHARD)
    }

    /// Implements `MerkleCRH^Orchard` as defined in
    /// <https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh>
    ///
    /// The layer with 2^n nodes is called "layer n":
    ///     - leaves are at layer MERKLE_DEPTH_ORCHARD = 32;
    ///     - the root is at layer 0.
    /// `l` is MERKLE_DEPTH_ORCHARD - layer - 1.
    ///     - when hashing two leaves, we produce a node on the layer
    ///       above the the leaves, i.e. layer = 31, l = 0
    ///     - when hashing to the final root, we produce the anchor
    ///       with layer = 0, l = 31.
    fn combine(altitude: Level, left: &Self, right: &Self) -> Self {
        // MerkleCRH Sinsemilla hash domain.
        let domain = HashDomain::new(MERKLE_CRH_PERSONALIZATION);

        Self(
            domain
                .hash(
                    iter::empty()
                        .chain(i2lebsp_k(altitude.into()).iter().copied())
                        .chain(left.inner().to_le_bits().iter().by_vals().take(L_ORCHARD_MERKLE))
                        .chain(right.inner().to_le_bits().iter().by_vals().take(L_ORCHARD_MERKLE)),
                )
                .unwrap_or(pallas::Base::zero()),
        )
    }

    fn empty_root(altitude: Level) -> Self {
        EMPTY_ROOTS[<usize>::from(altitude)]
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use halo2_proofs::arithmetic::Field;
    use rand::rngs::OsRng;

    #[test]
    fn bridgetree_checkpoints() {
        const MAX_CHECKPOINTS: usize = 100;
        let mut tree = MerkleTree::new(MAX_CHECKPOINTS);
        let mut roots = vec![];

        for id in 0..MAX_CHECKPOINTS {
            let leaf = MerkleNode::from(pallas::Base::random(&mut OsRng));
            tree.append(leaf);
            roots.push(tree.root(0).unwrap());
            tree.checkpoint(id);
        }

        for root in roots.iter().rev() {
            tree.rewind();
            assert!(root == &tree.root(0).unwrap());
        }
    }
}